ON THE PROBABILITY THAT AN INTEGER CHOSEN ACCORDING TO THE BINOMIAL DISTRIBUTION BE \boldsymbol{k}-FREE

J. E. NYMANN AND W. J. LEAHEY

Introduction. Let s and t be integers chosen from among the first $n+1$ non-negative integers according to a binomial distribution with parameter $p, 0<p<1$. Consider the probability that s and t be relatively prime. In [1] we showed that this probability tends to $6 / \pi^{2}$, independent of p, as $n \rightarrow \infty$. Suppose now we choose a single integer s from the first $n+1$ non-negative integers according to a binomial distribution and ask what is the probability that s be squarefree. In this paper we show that the techniques of [1] can also be used to show that this probability is $6 / \pi^{2}$ in the limit. In fact we show something more, viz., that the probability that s be k-free, k any integer greater than 1 , is $1 / \zeta(k)$ where ζ denotes the Riemann zetafunction. (s is k-free if and only if s is not divisible by the k-th power of any prime.) In section 1 we deal with the case $k>2$ and in section 2 , with the case $k=2$.

1. Let n be a non-negative integer and denote by N_{n} the set of integers $0,1,2, \cdots, n$. Let P_{n} be a probability distribution on N_{n} and let Q_{k} denote the set of non-negative k-free integers. Set $Q_{k}(n)=$ $Q_{k} \cap N_{n}$. For any positive integer d, let $A_{n}(d)=\left\{j \in N_{n}: j \equiv 0\right.$ $(\bmod d)\}$. We then have the following.

Lemma 1. Let P_{n} be any probability measure on N_{n}. Then for $n>1$,

$$
P_{n}\left(Q_{k}(n)\right)=\sum_{1 \leqq d \leqq n^{1 / k}} \mu(d)\left\{P_{n}\left(A_{n}\left(d^{k}\right)\right)-P_{n}(\{0\})\right\} .
$$

Proof. Let $p_{1}<p_{2}<\cdots<p_{s}$ be the primes less than or equal to $n^{1 / k}$. Then, if $\tilde{Q}_{k}(n)$ denotes the complement of $Q_{k}(n)$ in N_{n}, we have

$$
\tilde{Q}_{k}(n)=\bigcup_{i=1}^{s} A_{n}\left(p_{i}{ }^{k}\right) .
$$

Therefore

Received by the editors on October 29, 1975, and in revised form on April 26, 1976.

