ON THE PROBABILITY THAT AN INTEGER CHOSEN ACCORDING TO THE BINOMIAL DISTRIBUTION BE k-FREE

J. E. NYMANN AND W. J. LEAHEY

Introduction. Let s and t be integers chosen from among the first n+1 non-negative integers according to a binomial distribution with parameter p, 0 . Consider the probability that s and t berelatively prime. In [1] we showed that this probability tends to $6/\pi^2$, independent of p, as $n \to \infty$. Suppose now we choose a single integer s from the first n+1 non-negative integers according to a binomial distribution and ask what is the probability that s be squarefree. In this paper we show that the techniques of [1] can also be used to show that this probability is $6/\pi^2$ in the limit. In fact we show something more, viz., that the probability that s be k-free, k any integer greater than 1, is $1/\zeta(k)$ where ζ denotes the Riemann zetafunction. (s is k-free if and only if s is not divisible by the k-th power of any prime.) In section 1 we deal with the case k > 2 and in section 2, with the case k=2.

1. Let n be a non-negative integer and denote by N_n the set of integers $0, 1, 2, \dots, n$. Let P_n be a probability distribution on N_n and let O_k denote the set of non-negative k-free integers. Set $O_k(n) =$ $Q_k \cap N_n$. For any positive integer d, let $A_n(d) = \{j \in N_n : j \equiv 0\}$ \pmod{d} . We then have the following.

LEMMA 1. Let P_n be any probability measure on N_n . Then for n > 1,

$$P_n(Q_k(n)) = \sum_{1 \le d \le n^{1/k}} \mu(d) \{ P_n(A_n(d^k)) - P_n(\{0\}) \}.$$

PROOF. Let $p_1 < p_2 < \cdots < p_s$ be the primes less than or equal to $n^{1/k}$. Then, if $\tilde{Q}_k(n)$ denotes the complement of $Q_k(n)$ in N_n , we have

$$\tilde{Q}_k(n) = \bigcup_{i=1}^s A_n(p_i^k).$$

Therefore

Received by the editors on October 29, 1975, and in revised form on April 26, 1976.