EVENTUALLY *p*-VALENT FUNCTIONS DOUGLAS MICHAEL CAMPBELL*

I. Introduction. In this paper we introduce the concept of eventual p-valence and investigate properties of eventually p-valent functions. Let $\mathcal{A}(D)$ denote the set of all functions f(z) which are analytic in |z| < 1. We define a function f(z) in $\mathcal{A}(D)$ to be eventually p-valent if there is a neighborhood \mathcal{W} of infinity such that for all $w \in \mathcal{W}, f(z) = w$ has at most p roots in |z| < 1. Since eventual p-valence does not depend upon averaging properties, it is a natural concept for geometric function theory. Although the idea of eventual p-valence is hinted at in the literature, eventually p-valent functions have not been systematically investigated.

In Table 1 we summarize the necessary relations among functions which are eventually *p*-valent, areally mean *p*-valent, circumferentially *p*-valent or weakly *p*-valent. The proofs of some of these necessary relations are simplified by considering the set of all normalized locally univalent functions in $\mathcal{A}(D)$ with the real normed linear space structure introduced and developed in [11], [4]. We show that the concept of eventual *p*-valence is a meaningful linear invariant property while the notions of areal mean *p*-valence and circumferential mean *p*-valence are not meaningful linear invariant properties.

We define the growth of an analytic function in $\mathcal{A}(D)$ in terms of its maximum modulus M(r, f) and show that growth f is a linear invariant concept. This allows us to form a new partitioning of the (universal) families \mathcal{U}_{α} of Pommerenke [20] and leads to the definition of the (universal) families \mathcal{U}^{γ} . If f(z) is eventually p-valent, we show that $M(r, f) = O((1 - r)^{-2p})$.

We extend the Asymptotic Bieberbach Conjecture of G. Wing [22] to functions which are not even locally univalent. We conclude with four open questions suggested by the Extended Wing Theorem.

II. Definitions and Preliminary Notions. We let \mathcal{J} denote the set of all Möbius transformations of $D = \{|z| < 1\}$ onto D and let \mathcal{L} . \mathcal{S} . denote the set of all functions of the form $f(z) = z + \cdots$ which are analytic and locally univalent $(f'(z) \neq 0)$ in D. If \mathcal{M} is a family of functions in \mathcal{L} . \mathcal{S} , we say that \mathcal{M} is a *linear invariant family* [20, p. 112] if and only if for every $\phi(z)$ in \mathcal{J} , the function

Received by the editors on October 17, 1975.

^{*}This research was conducted while the author was a Morehead Fellow at the University of North Carolina. It was also supported by the U.S. Army Research Office – Durham, Grant DA-ARO-D-31-124-G1151.