MULTI-PARAMETER SPECTRAL MEASURES, GENERALIZED RESOLVENTS, AND FUNCTIONS OF POSITIVE TYPE

R. SHONKWILER

1. Introduction.

1.1. In this paper we extend the development of spectral triples as introduced in McKelvey [12] to the case of several parameters. Our central theme is the study of the interplay of certain classes of functions $\{E(t), Q(\lambda), V(s)\}$ whose values are bounded operators on a complex Hilbert space. In the proto-type for the general situation these functions arise from a sequence, A^{j} , $j = 1, \dots, m + n$, of m + n selfadjoint operators in the space H the last n of which are, in addition, positive. Corresponding to each operator A^{j} there is defined its resolution of the identity $\mathbf{E}_{i,j}^{i} - \infty < t_{j} < \infty$,

$$\mathbf{A}^{j} = \int t^{j} d\mathbf{E}_{t^{j}}^{j},$$

its resolvent function \mathbf{Q}^{i}_{j} ,

$$\mathbf{Q}_{j}^{i} = \lambda^{j} (I - \lambda^{j} \mathbf{A}^{j})^{-1}, \text{ Im } \lambda^{j} \neq 0 \text{ unless } \lambda^{j} = 0,$$

and the unitary group U_{sj}^{j} ,

$$\mathbf{U}_{\mathbf{s}^{j}}^{j}=e^{-i\mathbf{s}^{j}\mathbf{A}^{j}},\quad -\infty < s^{j}<\infty$$

In case A^{j} is positive we prefer to work with the semi-group $V_{s,i}^{j}$,

$$\mathbf{V}_{s^j}^j = e^{-s^j \mathbf{A}^j}, \quad s^j \ge 0.$$

Furthermore in this case the resolution of the identity vanishes on the half-axis $t \leq 0$ and the resolvent is defined on the negative half-axis $\lambda^{j} < 0$.

We assume that the operators A^j commute pairwise, that is the resolutions of the identity E^j commute pairwise. Then all the operator families Q^j , U^j and V^j commute pairwise and we may define the multiparameter operator functions E(t), $Q(\lambda)$, and V(s) according to the equations

$$\mathbf{E}(t^1, \cdots, t^{m+n}) = \prod_{j=1}^{m+n} \mathbf{E}_{t^j}^j, \ (t \in \Gamma_+)$$

Received by the editors on February 10, 1975.