CHARACTERS OF THE WEYL GROUP OF SU(n) ON ZERO WEIGHT SPACES AND CENTRALIZERS OF PERMUTATION REPRESENTATIONS

DAVID A. GAY

1. Introduction. If G is a compact simple Lie group with maximal abelian subgroup T and normalizer N(T), then W = N(T)/T is a finite group called the Weyl group of G. If \mathcal{G} is the Lie algebra of G with \mathcal{T} the Cartan subalgebra corresponding to T, then the adjoint action of G on \mathcal{G} has the property that $\mathcal{T} = \{x \in \mathcal{G}: t \cdot x = x \text{ for all } t \in T\}$. Thus \mathcal{T} is naturally a W-module and it is well-known that W acts on \mathcal{T} as a group generated by reflections. A generalization of this situation is the following. Let M be a complex G-module and let $M_0 = \{x \in M: t \cdot x = x \text{ for all } t \in T\}$, the zero-weight space of M. Then M_0 is naturally a W-module. It is the purpose of this paper to characterize the W-module structure of M_0 in case G = SU(V) (where V is n-dimensional unitary space) and M is a finite dimensional simple G-module.

REMARK. The structure of M_0 as a W-module is closely related to the structure of H, the graded G-module of G-harmonic polynomials over \mathcal{G} . For example, the multiplicity of M in H is exactly $k = \dim(M_0)$. Furthermore, if m_1, \dots, m_k are the homogeneous degrees of H in which M occurs (the generalized exponents of M), then the eigenvalues in M_0 of a Coxeter-Killing element in W are just $\exp(2\pi i/m_j)$ $(j = 1, \dots, k)$. See Kostant's paper [3] for a definition of the G-harmonic polynomials and more details.

Our results for G = SU(V) depend heavily on the classical correspondence between the irreducible representations of SU(V) and those of the symmetric groups S_m as m ranges over all positive integers. This correspondence is due to the fact that the linear span of the action of S_m on $\otimes^m V$ is the full centralizer of the action of SU(V)on $\otimes^m V$. In § 2, we will summarize this correspondence using a more general result about centralizing group representations. In § 3 we will prove a sharpened version of this result for permutation representations of finite groups. Finally, in § 4 we will obtain a formula for the character of W on M_0 related to Littlewood's plethysm of S-functions.

Received by the editors on January 3, 1975.