LATTICE-VALUED BOREL MEASURES

S. S. KHURANA

ABSTRACT. A Riesz representation type theorem is proved for measures on locally compact spaces, taking values in some ordered vector spaces.

In a series of papers ([4], [5], [6]), J. M. Maitland Wright has established, among other things, some Riesz representation type theorems for positive linear mappings from C(X) to E, X being a compact Hausdorff space and E a complete (or σ -complete) vector-lattice. In this paper we prove these results (Theorem 4) by using the properties of order convergence in vector lattices.

We shall use the notations of ([2], [3]). For a compact Hausdorff space X, we denote by C(X) the vector space of all continuous realvalued functions on X with sup norm, by L(X) and M(X) the dual and bidual of C(X), respectively, and by $\beta(X)$ and $\beta_1(X)$ the sets of all bounded Borel and Baire measurable real-valued functions on X, respectively. In the natural order C(X) is a vector lattice and $\beta(X)$ and $\beta_1(X)$ are boundedly σ -complete lattices. Also L(X) and M(X)are boundedly complete vector lattices and C(X) is a sublattice of M(X). Let S(X) be the subspace of M(X) generated by those elements of M(X) which are suprema of bounded subsets of C(X).

Let E be a vector lattice (always assumed to be over the field of real numbers). Order convergence, order closure (*\sigma*-closure), order continuity (σ -continuity) in vector lattices are taken in the usual sense (1], [2], [3]). If A is a subset of E, let A₁ be the set of order limits, in E, of sequences in A, A_2 be the set of order limits of sequences in $A \cup A_1$ (= A_1), and so on. Continuing this process transfinitely, if necessary, and taking the union of all these subsets, we get the order σ -closure of the set \breve{A} . A vector subspace B of E we shall call monotone order closed (σ -closed), if for any net (sequence) $\{x_{\alpha}\}$, such that $x_{\alpha} \uparrow x$ in $E, x \in B$ $(x_{\alpha} \uparrow x$ means $\{x_{\alpha}\}$ is increasing and its sup is x). Now if A is a vector sublattice of a boundedly σ -complete vector lattice E, E_1 a monotone order σ -closed vector subspace of E, and $E_1 \supset A$, then $E_1 \supset A_1$ (A₁ as defined above); since A_1 is also a vector sublattice of *E*, $E_1 \supset A_2$, and so continuing this (transfinitely if necessary) we get $E_1 \supset$ order σ -closure of A. This result will be needed later. Monotone order continuity (σ -continuity) can be defined between ordered