A TRANSFORMATION FORMULA FOR PRODUCTS ARISING IN PARTITION THEORY ${ }^{1}$

M. V. SUBBARAO AND V.V. SUBRAHMANYASASTRI ${ }^{2}$

Abstract. We obtain a transformation formula involving Euler products. The formula can be utilized to obtain a large variety of partition-theoretic identities.

1. A transformation formula. Let $f(a, x)$ be the product given by

$$
\begin{equation*}
f(a, x)=\prod_{n=1}^{\infty}\left(1-a^{\alpha(n)} x^{n}\right)^{g(n) / n} \tag{1.1}
\end{equation*}
$$

where $\alpha(n), g(n)$ are totally multiplicative functions of n (that is, $\alpha(m n)=\alpha(m) \boldsymbol{\alpha}(n), g(m n)=g(m) g(n)$ for all positive integers m and $n)$. Then we shall prove in this note that

$$
\begin{equation*}
\prod_{r=0}^{k-1} f\left(a, \omega^{r} x\right)=\prod_{d \mid k} \prod_{\delta \mid(k / d)} f\left(a^{(k / d) \alpha(d \delta)}, x^{k \delta}\right)^{(g(d \delta) / \delta) \mu(\delta)}, \tag{1.2}
\end{equation*}
$$

ω being a primitive k-th root of unity.
This result is a generalization of the identity proved earlier in [3]:

$$
\begin{equation*}
\prod_{r=0}^{k-1} \phi\left(\omega^{r} x\right)=\prod_{d \mid k}\left\{\phi\left(x^{k d}\right)\right\}^{(k / d) \mu(d)} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(x)=\prod_{n=1}^{\infty}\left(1-x^{n}\right) \tag{1.4}
\end{equation*}
$$

and $\sigma(n)$ denotes the sum of the positive divisors of n. This is an important tool in deriving partition-theoretic identities such as the celebrated Ramanujan identity

[^0]
[^0]: Received by the editors on June 17, 1974, and in revised form on November 4, 1974.
 ${ }^{1}$ This research was supported in part by National Research Council Grant \#3103.
 ${ }^{2}$ On leave from Sri Venkateswara University, India.
 AMS (MOS) Subject classification(1970): 5A17, 5A19.
 Key words and phrases: Euler and Jacobi identitites, primitive roots of unity.

