THE COMPLETE PADÉ TABLES OF CERTAIN SERIES OF SIMPLE FRACTIONS

ALBERT EDREI
Introduction. Let the expansion

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} z^{k}=A(z) \quad\left(a_{0} \neq 0\right) \tag{1}
\end{equation*}
$$

have a positive radius of convergence and let its analytic continuation define a function $A(z)$, meromorphic in the whole plane. Put

$$
\begin{equation*}
a_{-k}=0 \quad(k=1,2,3, \cdots) \tag{2}
\end{equation*}
$$

and associate with every pair (m, n) of ordered, nonnegative integers the polynomial
(3) $\quad A_{m n}(z)=\left|\begin{array}{lllll}1 & z & z^{2} & \cdots & z^{n} \\ a_{m+1} & a_{m} & a_{m-1} & \cdots & a_{m-n+1} \\ a_{m+2} & a_{m+1} & a_{m} & \cdots & a_{m-n+2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m+n} & a_{m+n-1} & a_{m+n-2} & \cdots & a_{m}\end{array}\right| \quad\left(A_{m 0}(z) \equiv 1\right)$,
and the Hankel determinant

$$
A_{m}^{(n)}=A_{m n}(0) \quad\left(A_{m}^{(0)}=1, m \geqq 0\right)
$$

In everything that follows $\{m(\lambda)\}_{\lambda=1}^{\infty},\{n(\lambda)\}_{\lambda=1}^{\infty}$ denote two sequences of nonnegative integers such that

$$
\begin{equation*}
A_{m}^{(n)} \neq 0 \quad(m=m(\lambda), n=n(\lambda) ; \lambda=1,2,3, \cdots) \tag{4}
\end{equation*}
$$

and we usually require

$$
\begin{equation*}
m(\lambda) \rightarrow \infty, n(\lambda) \rightarrow \infty \quad(\lambda \rightarrow \infty) . \tag{5}
\end{equation*}
$$

We say that

$$
\begin{equation*}
Q_{m n}(z)=\frac{A_{m n}(z)}{A_{m}^{(n)}} \quad(m=m(\lambda), n=n(\lambda)) \tag{6}
\end{equation*}
$$

[^0]
[^0]: The research of the author was supported by a grant from the National Science Foundation GP-33175.

