ON THE CONJUGATING REPRESENTATION OF A FINITE GROUP

K. L. FIELDS

Very little is known about how the conjugating representation of a finite group decomposes into irreducible representations. In this note we investigate which sets of multiplicities are possible in such a decomposition. The analogous question for the regular representation is also long unsolved. Let $\nu_{G}=C \cdot 1_{G}+\gamma_{G}$ denote the conjugating representation of G (or its character). If c denotes the number of conjugacy classes of G, then the principal representation 1_{G} does not appear in the decomposition of γ_{G}. We show here that if G is not abelian (i.e., if $\left.\gamma_{G} \neq 0\right)$ then γ_{G} contains at least two inequivalent irreducible representations; moreover, if the group has trivial center and is not the symmetric group on three letters, then γ_{G} is not multiplicity-free; and if the group is simple, then the g.c.d. of the degrees of the irreducible constituents of γ_{G} is not divisible by the degree of any irreducible representation of G.

Recall that a primary representation is a direct sum of copies of a single irreducible representation.

Lemma. If γ_{G} is primary or multiplicity free then $\gamma_{G / Z(G)}$ must also be respectively primary or multiplicity free.
Proof. Let $\mathrm{C}[G], \mathrm{C}[G / Z(G)]$ denote the complex group algebras of G and $G / Z(G)$ where $Z(G)$ denotes the center of G. Viewing these group algebras as left $\mathrm{C}[G / \mathrm{Z}(G)]$ modules with the action induced by conjugation, we see that $\mathrm{C}[G / \mathrm{Z}(G)]$ is a homomorphic image of $\mathrm{C}[G]$ (under the mapping induced by $G \rightarrow G / Z(G)$) and so is in fact a direct summand of $\mathrm{C}[G]$ by Maschke's Theorem. Hence if $\mathrm{C}[G]$ is a direct sum of copies of the trivial module and copies of a single irreducible module, or a direct sum of copies of the trivial module and a multiplicity free module, then so is $C[G / Z(G)]$.

Theorem 1. γ_{G} is never primary unless $\gamma_{G}=0$ and G is abelian.
Proof. Assume first that $Z(G)=1$. If $\nu_{G}=c \cdot 1_{G}+a_{\chi} \chi, a_{\chi} \geqq 0$ then $1^{*}{ }_{C\left(x_{i}\right)}=1_{G}+m_{i} \chi$ for some $m_{i} \geqq 0$. Here $\left\{x_{1}, \cdots, x_{c}\right\}$ is a complete set of non-conjugate elements of $G, \mathrm{C}\left(x_{i}\right)$ is the centralizer of x_{i} and $\left.1_{C\left(x_{i}\right)}^{*}\right)$ denotes the representation (or character) induced from the trivial representation of $\mathrm{C}\left(x_{i}\right)$. Hence $h_{i}=\left[G: \mathrm{C}\left(x_{i}\right)\right]=1+m_{i} \chi(1)$,

Received by the editors February 21, 1973.

