ON THE INTERCHANGE OF ORDER IN REPEATED LIMITS

ISIDORE FLEISCHER

This subject, one of the most fundamental in analysis, is here dealt with in an abstract setting so as to be applicable to as wide a variety of situations as possible. Even restricted to real-valued integer-indexed sequences the treatment offers some advantages over that to be found in the textbooks. Proofs, being both standard and easy, are omitted.

The framework at the outset will be a set X equipped with a nonnegative real-valued function of two variables satisfying

$$
\begin{aligned}
& \rho(y, x)=\rho(x, y) \\
& \rho(x, z) \leqq \rho(x, y)+\rho(y, z)
\end{aligned}
$$

$\rho(x, x)=0$ will follow of itself for all x for which $\rho(x, X)$ is not bounded away from zero; $\rho(x, y)=0$ for $x \neq y$ can be allowed.

Convergence on X will be introduced via the following notion [7] : by a (generalized) sequence on X I shall mean a triple consisting of an indexing set M, a filter base (i.e., a collection directed downward by inclusion) \exists of its nonvoid subsets, and a function x on M to X. (M, \mathcal{F}, x) is called equivalent to (N, \mathcal{G}, y) if

$$
\inf _{A \in \Theta, B \in \mathcal{G}} \sup _{\mu \in A, \nu \in B} \rho(x(\mu), y(\nu))=0
$$

Being symmetric and transitive, this is an equivalence relation on its domain whose elements are called Cauchy sequences. A sequence equivalent to an element (considered as the sequence injecting that element into X) is said to converge to it; if the element is unique I call it the limit of the sequence, $\lim _{马} x(\mu)$. Using convergence in the nonnegative reals, the convergence of a sequence to an element can be formulated as $\lim _{\ominus} \rho(x(\mu), x)=0$; more generally, the equivalence of (M, \mathcal{F}, x) with (N, \mathcal{G}, y) as $\left.\left.\lim _{\mathfrak{G} \mathcal{G}} \rho(x) \mu\right), y(\nu)\right)=0$, where $\mathcal{F} \times \mathcal{G}$ is the filter base on $M \times N$ of products $\{A \times B: A \in \mathcal{F}, B \in \mathcal{G}\}$.

Let now M and N be sets equipped with the respective filter bases \mathcal{F} and \mathcal{G}, and let x be a function on $M \times N$ to X. By fixing a value of $\nu \in N$ I may regard x as a function on M whose limit, $\lim _{\mathcal{9}} x(\mu, \nu)$, if it exists, is a function on N whose limit, if it in turn exists, is called the repeated limit $\lim _{\mathcal{G}} \lim _{g} x(\mu, \nu)$.

Another approach to this quantity is via the filter base $\mathcal{G} / \mathcal{F}$ on $M \times N$ which consists of the subsets $U_{\nu \in B} A_{\nu} \times\{\nu\}$ where the A_{ν} and B are chosen in \mathfrak{F} and \mathcal{G} respectively in all possible ways. Thus $x=$

Received by the editors June 14, 1972 and in revised form November 4, 1972.

