CONTINUED FRACTION SOLUTIONS OF THE GENERAL RICCATI DIFFERENTIAL EQUATION

HOMER G. ELLIS

The ideas presented here were developed in response to an observation made by H. S. Wall, whose memory as teacher and friend I cherish. In a class meeting of his course on continued fractions (in 1959-60, I think it was) he showed us how he had generated a continued fraction for a solution of the Riccati differential equation $y'(x) = x^2 + y^2(x)$. As an example for his undergraduate class in differential equations he had computed y(x) as a ratio u(x)/v(x) of power series satisfying $u'(x) = x^2v(x)$, v'(x) = -u(x), u(0) = 0, v(0) =1. He had then applied repeated long division and obtained

$$y(x) = \frac{x^3}{3} - \frac{x^4}{7} - \frac{x^4}{11} - \frac{x^4}{15} - \cdots$$

Recalling for us the similar continued fraction for tan x, which satisfies the Riccati equation $y'(x) = 1 + y^2(x)$, he proposed the problem of generalizing these expansions. I took up the challenge and after some experimentation arrived at the following iterative scheme: if z is a complex number, and each of p_n , q_n , r_n , a_n , and b_n is a complex-valued function on the real interval I, then the recurrence relation $y_n = a_n^2/(a_n - b_n z - y_{n+1}z^2)$ converts the Riccati equation $y_n' = p_n + q_n y_n z + r_n y_n^2 z_n^2$ to the Riccati equation $y'_{n+1} = p_{n+1} + q_{n+1} y_{n+1} z + r_{n+1} y_{n+1}^2 z^2$ if

(1)

$$a_{n}' = p_{n}, b_{n}' = q_{n}a_{n},$$

$$p_{n+1} = p_{n}(b_{n}/a_{n})^{2} - q_{n}b_{n} + r_{n}a_{n}^{2},$$

$$q_{n+1} = 2p_{n}(b_{n}/a_{n}^{2}) - q_{n},$$

$$r_{n+1} = p_{n}/a_{n}^{2}.$$

Starting from $y_0 = y$, $p_0 = p$, $q_0 = q$, $r_0 = r$, this scheme produces, with minimal restrictions on p, q, and r, formal *J*-fraction solutions y of the general Riccati equation

$$(2) y' = p + qyz + ry^2 z^2,$$

namely

(3)
$$y = \frac{\alpha_0}{1 - \beta_0 z} - \frac{\alpha_1 z^2}{1 - \beta_1 z} - \frac{\alpha_2 z^2}{1 - \beta_2 z} - \cdots,$$

AMS (MOS) Subject Classifications (1970) Primary 34A45, Secondary 40A15.

Copyright © 1974 Rocky Mountain Mathematics Consortium