OBSTRUCTIONS TO EMBEDDING AND ISOTOPY IN THE METASTABLE RANGE

LAWRENCE L. LARMORE

1. Introduction.

1.1. Preliminary definitions and summary. Throughout this paper, "manifold" means differentiable manifold (closed or open) without boundary, with a countable base. "Differentiable" means infinitely differentiable, and "embedding" means differentiable embedding.

Suppose V and M are manifolds of dimension k and n, respectively, V compact, and $f: V \rightarrow M$ is a differentiable map. An embedding homotopy of f (abbreviated *e*-homotopy) shall be defined to be a homotopy of differentiable maps, $f_t: V \to M$, for $0 \leq t \leq 1$, such that $f_0 = f$ and f_1 is an embedding. We say that *e*-homotopies $\{f_{0,t}\}$ and $\{f_{1,t}\}$ are *isotopic* if there exists a 2-parameter homotopy of differentiable maps $f_{\tau,t}: V \to M$, for $0 \leq \tau$, $t \leq 1$, such that $f_{\tau,0} = f$ and $f_{\tau,1}$ is an embedding for all τ . Let $[f_t]$ denote the isotopy class of $\{f_t\}$, and let $[V \subset M]_f$ denote the set of all isotopy classes of ehomotopies of f.

It is not difficult to show that if f is an embedding, $[V \subset M]_f$ naturally has the structure of an Abelian group with identity [f](where $\{f\}$ is the constant homotopy), provided 2n > 3(k+1). However, this construction is not within the scope of the present paper; we refer the reader to [. C. Becker [1]] for the case when M is a Euclidean space. $[V \subseteq R^n]_f$ becomes E(V, n), the so-called embedding group.

We consider three problems in this paper. The first is existence of an *e*-homotopy of f, i.e., whether $[V \subset M]_f$ is nonempty; the second is enumeration of $[V \subset M]_{ti}$ more precisely, whether two given ehomotopies are isotopic. The third question deals with the function $\Delta : [V \subset M]_f \rightarrow [V \subset M]$, where $[V \subset M]$ is the set of isotopy classes of embeddings of V into M, and where, for any e-homotopy $\{f_t\}$ of f, $\Delta[f_t] = [f_1]$, the isotopy class containing f_1 . As we see in §3.5, there is an action of $\pi_1(M^V, f)$ on $[V \subset M]_f$ whose orbits correspond to the image of Δ , where M^V is the space of differentiable functions $V \rightarrow M$ with the compact-open topology. In §3.8, we discuss

Received by the editors December 19, 1970.

AMS (MOS) subject classifications (1970). Primary 57O40, 57G35; Secondary 57B30.