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SPACES WITH COMPACT SUBTOPOLOGIES 
HAROLD REITER 

Introduction. In [ 1] , Banach posed the problem of characterizing 
metric spaces which have a coarser compact metrizable topology. 
Banach asked if the space c0 has the property. Klee [5] answered 
the question affirmatively. The purpose of this paper is to answer 
Banach's question in some special cases and to study a class of 
spaces containing all those with compact metrizable subtopologies. 
A y space X is a topological space whose topology is finer than a 
compact Hausdorff topology. 

§1 consists of a theorem which allows us to restrict our attention to 
Tychonoff spaces and several examples. In §2 we show that the class 
of y spaces is closed under sums and products, but not under quotients. 
In §3 it is proved that an example of Sierpinski of a non^y space 
admits a complete metric. Finally in §4 we prove a theorem which 
shows the abundance of non^y spaces. 

1. DEFINITIONS 1.1. A topological space X is a y space if 
there is some compact Hausdorff space K and a continuous bijection 
from X onto K. A space X has property F if it is metrizable and its 
topology is finer than some compact metrizable topology. A topologi­
cal space X is an s space if the family C(X) of real continuous functions 
on X separates the points of X. A completely regular space X is a 
Baire space if the intersection of countably many dense open subsets 
of X is necessarily dense in X. 

EXAMPLE 1.2. Every y space is an s space. Hence every y space is 
Hausdorff. However, the family C(X) need not separate points and 
closed sets. That is, a y space X need not be completely regular. Let 
{Z | |Z| = 1} be the closed unit disc in the plane. Let ^U be the usual 
topology for X and B the boundary of X in the plane. Topologize X 
as follows: A set U is open if 

(1) [ / C X \ ß a n d [ / G ^ o r 
(2) U H (X\B) GQlandx<$rU- cl(X\(B U U)) for x G U. Thus, 

one sees that open sets contained in X\B are as usual and open 
sets about a point p of B consist of all points in some T^-open set U 
about p except for the points of B\ {p} in U and unions of sets of this 
type. Call this topology r. Now, (X, r) is not completely regular. In 
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