COUNTABLY RECOGNIZABLE CLASSES OF GROUPS¹

RICHARD E. PHILLIPS

I. Introduction. A class Σ of groups is a collection of groups containing the unit group *E* and closed under the taking of isomorphisms. Let Σ be a class of groups:

(i) $s(\Sigma)$ is the class of all groups which are subgroups of Σ groups.

(ii) $q(\Sigma)$ is the class of all groups which are quotients of Σ groups.

(iii) $L(\Sigma)$ is the class of all groups in which every finitely generated subgroup is a Σ group.

If $L(\Sigma) \subset \Sigma$, Σ is said to satisfy the local theorem. If Σ satisfies the local theorem and $s(\Sigma) = \Sigma$, then the class Σ is determined in a certain sense by the finitely generated groups in Σ .

In this paper, we are interested in classes of groups determined by their countable subgroups. In the sequel, the word countable will mean countably infinite or finite.

DEFINITION 1.1. Let Σ be a class of groups. $C(\Sigma)$ is the class of all groups G such that every countable subgroup of G is a Σ group.

DEFINITION 1.2. A class of groups Σ is countably recognizable if $C(\Sigma) \subset \Sigma$.

Observe that if Σ satisfies the local theorem, then Σ is countably recognizable. Further, if $s(\Sigma) = \Sigma$, then Σ is countably recognizable if and only if $C(\Sigma) = \Sigma$.

The notion of a countably recognizable class of groups is due to R. Baer [1]. In the paper [1], it is shown that many classes of groups which do not satisfy the local theorem are countably recognizable. There are other isolated theorems of this type in the literature: e.g., [6, p. 219] shows that the class of ZA groups is countably recognizable: see also [10, p. 349] for a theorem of this type.

In this paper, we add several classes to the list of countably recognizable classes. Let Σ be countably recognizable and assume $s(\Sigma) = \Sigma$. Then the following classes are also countably recognizable:

(1) The class of groups G such that every simple factor G is a Σ group (Theorem 4.2).

(2) The class of groups G such that every principal factor of every subgroup of G is a Σ group (Theorem 5.2).

Received by the editors September 16, 1969 and, in revised form, January 14, 1970.

AMS 1970 subject classifications. Primary 20E25; Secondary 20E20.

¹This research was supported by a research grant from the University of Kansas. Part of the contents of this paper was given in a talk at a Conference on Nilpotent Groups, May 1969, at the University of Texas at Austin.

Copyright © Rocky Mountain Mathematics Consortium

489