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ABSTRACT. Estimates for the measure of noncompactness
of linear integral operators of vector functions in ideal spaces
are obtained. When the kernel function is compact, no ad-
ditional uniformity or measurability hypotheses are needed;
however, noncompact nonmeasurable kernel functions are also
treated.

1. Introduction. Throughout this paper, let T and S be o-finite
measure spaces. Under some continuity or growth assumptions for f,
it is well known that

(1) Az(t) ::/Sf(t,s,x(s))ds (teT)

is continuous and compact in C (if T and S are compact subsets of
R"™) or in L, or, more generally, in ideal spaces, respectively, see e.g.,
[6, Part I, Theorems 3.1, 3.2], [7, Sections 5, 19] or [18].

It is natural to conjecture that, in the case of vector functions x
and f, ie, if /1T xS xU — V with Banach spaces U and V, one
obtains similar results. More precisely, one might conjecture that if
f(t,s,-) is a compact operator for almost all (¢,s) € T x S and if
f is a Carathéodory function (i.e., u — f(t,s,u) is continuous for
almost all (¢,s) and (¢,s) — f(t,s,u) is (strongly) measurable for each
u € U) then under natural additional hypotheses the corresponding
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