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MONOIDS OF MODULES OVER RINGS
OF INFINITE COHEN-MACAULAY TYPE

NICHOLAS R. BAETH AND SILVIA SACCON

ABSTRACT. Given a one-dimensional analytically un-
ramified local ring (R,m), let C(R) denote the monoid of iso-
morphism classes of maximal Cohen-Macaulay R-modules (to-
gether with [0]) with operation given by [M ]+[N ] = [M⊕N ].
If R is complete, then the Krull-Remak-Schmidt property
holds; i.e., direct-sum decompositions of finitely generated R-
modules are unique. If R is not complete, then properties of
the monoid C(R) measure how far R is from having the Krull-
Remak-Schmidt property. Using a list of ranks of indecom-
posable maximal Cohen-Macaulay modules over the m-adic
completion of R, we give a description of the monoid C(R)
when R has infinite Cohen-Macaulay type. Under certain hy-
potheses we show that, for arbitrary integers s and t both
greater than one, there exists a maximal Cohen-Macaulay R-
module M such that M ∼= L1⊕· · ·⊕Ls and M ∼= N1⊕· · ·⊕Nt

for indecomposable maximal Cohen-Macaulay R-modules Li

and Nj .

1. Introduction. Let R be a commutative ring, and let C be a
class of R-modules closed under isomorphism, finite direct sums and
direct summands. We say the Krull-Remak-Schmidt property holds for
the class C if, whenever M1 ⊕M2 ⊕ · · · ⊕Ms

∼= N1 ⊕N2 ⊕ · · · ⊕Nt for
indecomposable modules Mi, Nj ∈ C, then
(1) t = s, and

(2) there exists a permutation σ of the set {1, . . . , s} such that
Mi

∼= Nσ(i) for each i ∈ {1, . . . , s}.
Over a complete local ring, the Krull-Remak-Schmidt property holds
for the class of finitely generated modules (see [16, Theorem 5.20]).
Many authors, including Evans [6, Section 1] and Wiegand [18, Sec-
tions 3 and 4], have produced examples of noncomplete local rings
for which direct-sum decompositions of finitely generated modules are
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