ALGEBRAIC INTERPRETATION OF A THEOREM OF CLEMENTS AND LINDSTRÖM

SUSAN M. COOPER AND LESLIE G. ROBERTS

ABSTRACT. We study Hilbert functions of quotients of the truncated polynomial ring $k[x_1, \ldots, x_n] / (x_1^{e_1+1}, x_2^{e_2+1})$, $\ldots, x_n^{e_n+1}$, where $e_1 \ge e_2 \ge \cdots \ge e_n \ge 1$ are integers. We use the work of Clements-Lindström to recover the well-known Macaulay's Theorem.

1. Introduction. Let $R = k[x_1, \ldots, x_n]$, where k is a field, the x_i are indeterminates of degree 1, and I is a homogeneous ideal in R. Let S = R/I. Then $S = \bigoplus_{i>0} S_i$ is a graded ring. The Hilbert function of S is defined by $H_S(i) = \dim_k S_i, i \ge 0$. By convention we take $H_S(i) = 0$ if i < 0. A sequence $\{c_i\}_{i>0}$ such that $c_i = H_S(i), i \ge 0$ for some such S is called an O-sequence. In particular we have $c_0 = 1$. It is convenient to take $c_i = 0$ for i < 0. Macaulay characterized O-sequences combinatorially. Macaulay's characterization has been formulated by Stanley [7, Theorem 2.2 (i) \Leftrightarrow (iii)] in the form $c_0 = 1, c_i \ge 0$ for all $i \geq 0$, and $c_{i+1} \leq c_i^{\langle i \rangle}$ for $i \geq 1$, where $c_i^{\langle i \rangle}$ is defined in terms of binomial expansions. It is well known to commutative algebraists that the paper [1] of Clements and Lindström generalizes Macaulay's characterization of O-sequences to Hilbert functions of quotients of truncated polynomial rings of the form $k[x_1, ..., x_n] / (x_1^{e_1+1}, x_2^{e_2+1}, ..., x_n^{e_n+1})$, where $e_1 \ge e_2 \ge \cdots \ge e_n \ge 1$ are integers. However [1] is written in a combinatorial language and it seems not to be as well understood how to interpret [1] algebraically. Greene and Kleitman give an exposition of the work of Clements and Lindström in [3] (also in a primarily combinatorial language). The purpose of this expository note is to describe our present understanding of how things work algebraically. In Section 2 we recall the results of Macaulay (as presented in [7]). In Section 3 we interpret [1] in terms of rev-lex-segments and order

²⁰⁰⁰ AMS Mathematics subject classification. Primary 13D40.

Keywords and phrases. Hilbert functions, rev-lex-segment ideals. Received by the editors on November 12, 2007, and in revised form on May 4,

^{2008.}

DOI:10.1216/JCA-2009-1-3-361 Copyright ©2009 Rocky Mountain Mathematics Consortium

³⁶¹