ALGEBRAIC INTERPRETATION OF A THEOREM OF CLEMENTS AND LINDSTRÖM

SUSAN M. COOPER AND LESLIE G. ROBERTS

Abstract

We study Hilbert functions of quotients of the truncated polynomial ring $k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{e_{1}+1}, x_{2}^{e_{2}+1}\right.$, $\left.\ldots, x_{n}^{e_{n}+1}\right)$, where $e_{1} \geq e_{2} \geq \cdots \geq e_{n} \geq 1$ are integers. We use the work of Clements-Lindström to recover the well-known Macaulay's Theorem.

1. Introduction. Let $R=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field, the x_{i} are indeterminates of degree 1 , and I is a homogeneous ideal in R. Let $S=R / I$. Then $S=\oplus_{i \geq 0} S_{i}$ is a graded ring. The Hilbert function of S is defined by $H_{S}(i)=\operatorname{dim}_{k} S_{i}, i \geq 0$. By convention we take $H_{S}(i)=0$ if $i<0$. A sequence $\left\{c_{i}\right\}_{i \geq 0}$ such that $c_{i}=H_{S}(i), i \geq 0$ for some such S is called an O-sequence. In particular we have $c_{0}=1$. It is convenient to take $c_{i}=0$ for $i<0$. Macaulay characterized O-sequences combinatorially. Macaulay's characterization has been formulated by Stanley [7, Theorem 2.2 (i) \Leftrightarrow (iii)] in the form $c_{0}=1, c_{i} \geq 0$ for all $i \geq 0$, and $c_{i+1} \leq c_{i}^{<i>}$ for $i \geq 1$, where $c_{i}^{<i>}$ is defined in terms of binomial expansions. It is well known to commutative algebraists that the paper [1] of Clements and Lindström generalizes Macaulay's characterization of O-sequences to Hilbert functions of quotients of truncated polynomial rings of the form $k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{e_{1}+1}, x_{2}^{e_{2}+1}, \ldots, x_{n}^{e_{n}+1}\right)$, where $e_{1} \geq e_{2} \geq \cdots \geq e_{n} \geq 1$ are integers. However [$\left.\mathbf{1}\right]$ is written in a combinatorial language and it seems not to be as well understood how to interpret [1] algebraically. Greene and Kleitman give an exposition of the work of Clements and Lindström in [3] (also in a primarily combinatorial language). The purpose of this expository note is to describe our present understanding of how things work algebraically. In Section 2 we recall the results of Macaulay (as presented in [7]). In Section 3 we interpret [1] in terms of rev-lex-segments and order
[^0]
[^0]: 2000 AMS Mathematics subject classification. Primary 13D40.
 Keywords and phrases. Hilbert functions, rev-lex-segment ideals.
 Received by the editors on November 12, 2007, and in revised form on May 4, 2008.

 DOI:10.1216/JCA-2009-1-3-361 Copyright ©2009 Rocky Mountain Mathematics Consortium

