ON PROPERTIES OF M-IDEALS ## JUAN CARLOS CABELLO AND EDUARDO NIETO ABSTRACT. Given $r, s \in]0, 1]$, consider a Banach space X which satisfies the following inequality $$(*) ||f + g|| \ge r||f|| + s||g||$$ for every f in X^* and g in the annihilator of X in X^{***} . It is well known that if r=s=1, then X is a WCG Asplund space, satisfying property (u) of Pełczyński and property (A), i.e., every isometric isomorphism of X^{**} is the bitranspose of an isometric isomorphism of X. The aim of this work is to show that, to have the above-mentioned properties, it is not necessary to suppose that r=s=1. We prove, e.g., that r+s>1 implies the Asplundness, r=1 implies property (u) (with $k_u(X) \leq 1/s$), and s=1 implies X is WCG satisfying property (A). Also many examples are given. For instance, a renormed James space J satisfies (*) for s=1 and the renorming of c_0 by Johnson and Wolfe does not have property (A) and satisfies (*) for r=1. 1. Introduction. A Banach space X is an M-ideal in its bidual, in short, M-ideal, if the equality $\|\varphi\| = \|\pi\varphi\| + \|\varphi - \pi\varphi\|$ holds for every $\varphi \in X^{***}$, where π is the canonical projection of X, the natural projection from X^{***} onto X^* . The class of M-ideals has been carefully investigated by Å. Lima, G. Godefroy and the "Berlin school", among others. As a consequence of these efforts, P. Harmand, D. Werner and W. Werner have published a recent monograph [15] which is considered the most systematic and complete study about this class. The spaces $c_0(I)$, I any set, equipped with their canonical norm belong to this class, which also contains, e.g., certain spaces $\mathcal{K}(E, F)$ of compact operators between reflexive spaces, see, e.g., [3, 14, 18 and 27] or [15, Chapter VI]. M-ideals are known to enjoy many interesting isometric and isomorphic properties, e.g., they are weakly compactly generated (WCG) [8] and Asplund spaces [20], have properties (u) (with constant one) and (V) of Pelczyński [11] and [12], satisfy the Received by the editors on February 28, 1996. 1991 Mathematical Subject Classiffication: 46B20. Research partially supported by D.G.E.S., project No. PB96-1406.