A WEAK HARTMAN'S THEOREM FOR HOMOMORPHISMS and Semi-groups in a banach space*

JOHN T. MONTGOMERY
In this article we examine the extent to which Hartman's Theorem holds for homomorphisms and semi-groups in a Banach space. The technique used here for the main theorem is a modification of the technique of Moser's used by Pugh [4] to prove Hartman's Theorem for isomorphisms and groups in a Banach space.

Let E be a Banach space and let $L: E \rightarrow E$ be linear on E; possibly 0 is in the spectrum of L. A basic assumption throughout the paper is that L is hyperbolic; that is, $E=E^{u} \oplus E^{s}$ where $L E^{u} \subset E^{u}$ and $L E^{s} \subset E^{s}$, and $L^{s} \equiv L \mid E^{s}$ is a contraction while $L^{u} \equiv L \mid E^{u}$ is invertible and $\left(L^{u}\right)^{-1}$ is also a contraction. We let $k \equiv \max \left\{\left|L^{s}\right|\right.$, $\left.\left|\left(L^{u}\right)^{-1}\right|\right\}<1$. It is not hard to prove that if the spectrum of L has no points on the unit circle, then L is hyperbolic in some norm on E. Assume that E is given the norm $|x+y|=\max \{|x|,|y|\}$ for $x \in E^{u}$, $y \in E^{s}$.

Let $\beta(a)$ denote the set of bounded maps $\lambda: E \rightarrow E$ such that $|\lambda(x)-\lambda(y)| \leqq a|x-y|$ and $\lambda(0)=0$. We use $\Lambda=L+\lambda$ and Λ^{\prime} $=L+\lambda^{\prime}$ for $\lambda, \lambda^{\prime} \in \beta(a)$. We use 1 to denote an identity map.

We now state Pugh's version of Hartman's Theorem for isomorphisms for reference purposes:

Theorem 1. If L is an isomorphism and a is small enough, then for each Λ there is a unique bounded, uniformly continuous map $g: E \rightarrow E$ such that if $h=1+g$, then

$$
\begin{equation*}
h L=\Lambda h \tag{1}
\end{equation*}
$$

Furthermore h is a homeomorphism depending continuously on λ.
Equation (1) implies that h maps orbits of L into orbits of Λ and vice versa.

Hale gives the example [1]

$$
\begin{equation*}
\dot{x}(t)=2 \alpha x(t)+N\left(x_{t}\right) \tag{2}
\end{equation*}
$$

where $\alpha>0, N(0)=0$, and the Lipschitz constant of N in the ϵ-ball at 0 goes to 0 as $\epsilon \rightarrow 0$. Considered as a delay equation, (2) generates a strongly continuous semi-group $T(t)$ defined on $C\left([-r, 0], \mathbf{R}^{n}\right)$. If $N=0$, the range of $T(r)$ is one dimensional. It is not hard to con-

[^0]
[^0]: *Partially supported by a 1976 University of Rhode Island Summer Faculty Fellowship.

