A WEAK HARTMAN'S THEOREM FOR HOMOMORPHISMS AND SEMI-GROUPS IN A BANACH SPACE*

JOHN T. MONTGOMERY

In this article we examine the extent to which Hartman's Theorem holds for homomorphisms and semi-groups in a Banach space. The technique used here for the main theorem is a modification of the technique of Moser's used by Pugh [4] to prove Hartman's Theorem for isomorphisms and groups in a Banach space.

Let E be a Banach space and let $L: E \to E$ be linear on E; possibly 0 is in the spectrum of L. A basic assumption throughout the paper is that L is hyperbolic; that is, $E = E^u \oplus E^s$ where $LE^u \subset E^u$ and $LE^s \subset E^s$, and $L^s \equiv L \mid E^s$ is a contraction while $L^u \equiv L \mid E^u$ is invertible and $(L^u)^{-1}$ is also a contraction. We let $k \equiv \max\{|L^s|, |(L^u)^{-1}|\} < 1$. It is not hard to prove that if the spectrum of L has no points on the unit circle, then L is hyperbolic in some norm on E. Assume that E is given the norm $|x + y| = \max\{|x|, |y|\}$ for $x \in E^u$, $y \in E^s$.

Let $\beta(a)$ denote the set of bounded maps $\lambda : E \to E$ such that $|\lambda(x) - \lambda(y)| \le a|x - y|$ and $\lambda(0) = 0$. We use $\Lambda = L + \lambda$ and $\Lambda' = L + \lambda'$ for $\lambda, \lambda' \in \beta(a)$. We use 1 to denote an identity map.

We now state Pugh's version of Hartman's Theorem for isomorphisms for reference purposes:

Theorem 1. If L is an isomorphism and a is small enough, then for each Λ there is a unique bounded, uniformly continuous map $g: E \to E$ such that if h = 1 + g, then

(1)
$$hL = \Lambda h.$$

Furthermore h is a homeomorphism depending continuously on λ .

Equation (1) implies that h maps orbits of L into orbits of Λ and vice versa.

Hale gives the example [1]

(2)
$$\dot{x}(t) = 2\alpha x(t) + N(x_t)$$

where $\alpha > 0$, N(0) = 0, and the Lipschitz constant of N in the ϵ -ball at 0 goes to 0 as $\epsilon \to 0$. Considered as a delay equation, (2) generates a strongly continuous semi-group T(t) defined on $C([-r, 0], \mathbb{R}^n)$. If N = 0, the range of T(r) is one dimensional. It is not hard to con-

^{*}Partially supported by a 1976 University of Rhode Island Summer Faculty Fellowship.