STRONGLY RIGID RELATIONS

I. ROSENBERG

ABSTRACT. Vopěnka, Pultr and Hedrlín proved in 1965 that on any set A there exists a binary rigid relation ρ , i.e. a relation such that the identity transformation is the single homomorphism (compatible mapping) of ρ into ρ . We prove the existence of a strongly rigid binary relation on any set with at least three elements. It is a relation such that all homomorphisms of ρ^n into ρ are projections for all $n = 1, 2, \cdots$. We characterize all strongly rigid relations on a set with two elements. Our result can be also stated as follows: There exists a binary (if |A| > 2) or ternary (if |A| = 2) relation ρ on A such that the trivial universal algebra $\langle A; \phi \rangle$ is equivalent to $\langle A; A_p \rangle$ where A_p is the set of all operations on A preserving ρ .

1. Let A and I be sets such that |A| > 1, |I| > 0. Let A^{I} be the set of all mappings from I to A. Any subset ρ of A^{I} will be called an *I*relation or |I|-ary relation on A. If $|I| = k < \aleph_{0}$ we will identify A^{I} with A^{k} and, in particular, for |I| = 1, 2, 3 any *I*-relation is simply a unary, binary or ternary relation on A. Let ρ_{i} be *I*-relations on A_{i} (i = 1, 2). A mapping $f : A_{1} \rightarrow A_{2}$ is a homomorphism of ρ_{1} into ρ_{2} (or $\rho_{1}\rho_{2}$ compatible mapping [13]) if $g \in \rho_{1}$ implies $f \circ g \in \rho_{2}$. A homomorphism $f : A \rightarrow A$ of ρ into ρ is called an endomorphism. A relation ρ is rigid [13] if the identity transformation is the single endomorphism of ρ . The existence of a binary rigid relation on any set is proved in [13].

Given an *I*-relation ρ on *A* and $0 < n < \aleph_0$ we define the *I*-relation ρ^n on A^n as follows: $f \in \rho^n$ if there exist $f_i \in \rho$ $(i = 1, \dots, n)$ such that $fx = \langle f_1x, \dots, f_nx \rangle$ for all $x \in I$. For $1 \leq i \leq n < \aleph_0$ define the projections [4] (called sometimes *selective* or *trivial operations*) $e_i^n : A^n \to A$ by $e_i^n x_1 \cdots x_n = x_i$ for all $x_1, \dots, x_n \in A$. Finally set $J = \{e_i^n \mid 1 \leq i \leq n < \aleph_0\}$.

DEFINITION. Let ρ be an I-relation on A. The set of all homomorphisms of ρ^n into ρ $(1 \leq n < \aleph_0)$ will be denoted by A_{ρ} . The relation ρ will be called a strongly rigid relation if $A_{\rho} = J$.

The sets A_p were introduced in [3] for $|I| \leq |A| < \aleph_0$ and used in [1], [2], [14] and [7] - [12]. Obviously $f \in A_p$ if and only if ρ is a subalgebra of $\langle A^I, \{f\} \rangle$. A relation ρ is strongly rigid if and

Received by the editors September 10, 1971 and, in revised form, November 19, 1971.

AMS (MOS) subject classifications (1970). Primary 08A25, 08A05.

Copyright © 1973 Rocky Mountain Mathematics Consortium