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RELATIVE COHEN-MACAULAYNESS AND
RELATIVE UNMIXEDNESS OF BIGRADED MODULES

MARYAM JAHANGIRI AND AHAD RAHIMI

ABSTRACT. In this paper we study the finitely generated
bigraded modules over a standard bigraded polynomial ring
that are relative Cohen-Macaulay or relatively unmixed with
respect to one of the irrelevant bigraded ideals. A general-
ization of Reisner’s criterion for Cohen-Macaulay simplicial
complexes is considered.

Introduction. Let S = K[z1,...,Zm, Y1, --,Yn] be the standard
bigraded polynomial ring over a field K. We set P = (21, ... ,Z,) and
Q = (Y1,.-.,Yn). Let M be a finitely generated bigraded S-module.
In [11] we call M relative Cohen-Macaulay with respect to @ if we
have only one non-vanishing local cohomology with respect to @. In
other words, grade (Q, M) = cd (Q, M) where cd (Q, M) denotes the
cohomological dimension of M with respect to Q.

In [11], it is shown that if M is a finitely generated bigraded Cohen-
Macaulay S-module, then M is relative Cohen-Macaulay with respect
to P” if and only if “M is relative Cohen—Macaulay with respect to Q.”
In Section 1, inspired by this result, we raise the following question: if
M is relative Cohen-Macaulay with respect to P and @, is M Cohen-
Macaulay? We have an example in dimension 2 which shows that this
is not true in general. The question has a positive answer in some
special cases.

Next we show M to be relatively unmixed with respect to @ if
cd(Q, M) = cd(Q,S/p) for all p € AssM. We prove that relative
Cohen-Macaulay modules with respect to ) are relatively unmixed
with respect to @ but the converse is not true in general. The converse
is true under some additional assumptions.
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