MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXI, Mathematics No. 1, 1958.

On quasi-equicontinuous sets—Sets of solutions of a differential equation –

By

Kyuzo Hayashi

(Received October 21, 1957)

In the previous papers [5], [6], we have studied some kinds of transformations of differential equations. In the present paper the same subject will be studied more systematically.

In §1 we introduce the new concept of "quasi-equicontinuity." In §2 we study the correspondence between "quasi-equicontinuous sets" and "equicontinuous sets". In §3 and §4 we shall find it convenient to introduce the new concept into the theory of differential equations. Theorem 7 in §4 is an extension of theorems discussed in the previous papers.

1. Notations and definitions.

Notations. 1) Given two sets E, F, F(E, F) denotes the set of all functions defined on E with values in F. $F_1(E, F)$ denotes the set of all functions each of which is defined on a subset of E with values in F. Then clearly $F(E, F) \subset F_1(E,F)$. For each $u \in F_1(E, F)$ A_u denotes the subset of E on which u is defined. We denotes by τ such an element u of $F_1(E, F)$ as $A_u = \phi^{1_0}$.

2) Given two topological spaces E, F, C(E, F) denotes the set of all continuous functions on E to F. Clearly $C(E, F) \subset F(E, F)$. $C_1(E, F)$ denotes the subset of $F_1(E, F)$ such that for each $u \in C_1(E, F)$.

a) A_u is open,

b) u is continuous on A_u ,

c) if x_0 belongs to $\overline{A}_u^{(2)}$ but not to A_u , there is no point

¹⁾ ϕ means the empty set.

²⁾ \bar{A} means the closure of A.