J. Math. Kyoto Univ. 5-1 (1964) 67-85

Differentiable manifolds admitting complex distributions

By

Yoshihiro ICHIJYÔ

(Communicated by Professor A. Komatu, October 2, 1965)

The present paper continues the study made in a recent series of papers [2] and [3]¹⁾, concerning with an analytic *n*-dimensional manifold admitting a complex *r*-dimensional distribution satisfying a certain condition. For brevity, such a structure of a manifold will be called a π^r -structure. In the first paper [2], the case where n=2r+1 was treated and some results were obtained in connection with an almost contact metric structure due to S. Sasaki. In the second paper [3] was presented a generalisation of these results to the case where $n\geq 2r$ and it was found that there is a close relation between a π^r -structure and an f_r -structure due to K. Yano.

The purpose of the present paper is to show an existence of a certain f_r -structure and a symmetric real affine connection on a manifold with a $(\pi^r - \Gamma)$ -structure such that f is covariant constant. To do this, we shall first make clear a more precise relation between a π^r -structure and an f_r -structure, and discuss an integrable π^r -structure. We shall express our main result [in Theorem 9. It is remarked here that we assumed, in preceding papers, the manifold under consideration to be analytic, and, however, we shall treat, in the following, manifolds of class C^{∞} , unless otherwise provided.

¹⁾ Numbers in brackets refer to the references at the end of the paper.