On some mixed problems for fourth order hyperbolic equations

By
Sadao Miyatake

(Received June 6. 1968)

§1. Introduction and statement of result

We consider some mixed problems for fourth order hyperbolic equations. Let S be a smooth and compact hypersurface in $R^{n}(n \geq 2)$ and Ω be the interior or exterior of S. Let

$$
\text { (E) } \begin{aligned}
L u+B u & =\left(\frac{\partial^{4}}{\partial t^{4}}+\left(a_{1}+a_{2}+a_{3}\right) \frac{\partial^{2}}{\partial t^{2}}+a_{3} a_{1}\right) u+B\left(x, t, \frac{\partial}{\partial t}, D\right) u \\
& =f(x, t)
\end{aligned}
$$

Here $a_{k}(k=1,2,3)$ are the following operators:

$$
\begin{align*}
& a_{k}=-\sum_{i, j}^{n} \frac{\partial}{\partial x_{i}}\left(a_{k, i j}(x) \frac{\partial}{\partial x_{j}}\right)+b_{k}(x, D) . \tag{1.1}\\
& a_{k, i j}(x)=a_{k, j i}(x)
\end{align*}
$$

are real,

$$
\sum_{i j}^{n} a_{k, i j}(x) \xi_{i} \xi_{j} \geq \delta|\xi|^{2}, \quad(\delta>0)
$$

for every $(x, \xi) \in \Omega \times R^{n} \quad(k=1,2,3)$. B denotes an arbitrary third order differential operator. b_{k} are first order operators. Let us assume that all coefficients are sufficiently differentiable and bounded in $\bar{\Omega}$ or in $\bar{\Omega} \times(0, \infty)$. Recently S. Mizohata treated mixed problems for the equations of the form

$$
L=\prod_{i=1}^{m}\left(\frac{\partial^{2}}{\partial t^{2}}+c_{i}(x) a(x, D)\right)+B_{2 m-1},
$$

