J. Math. Kyoto Univ. (JMKYAZ) 12-2 (1972) 307-323

Residual intersections in Cohen-Macauley rings

By

M. ARTIN and M. NAGATA*

(Received August 30, 1971)

We investigate questions of the following kind: Let I be an ideal of a Cohen-Macauley local ring (R, \mathfrak{m}) . Suppose $I = \mathfrak{a} \cap \mathfrak{b}$, where \mathfrak{b} has height $\geq r$. Find conditions on I and \mathfrak{a} which will imply properties of \mathfrak{b} . We prove among other things (2.2) that if the number of generators of I is at most r, and if \mathfrak{a} is a complete intersection, then \mathfrak{b} can be chosen so that R/\mathfrak{b} is Cohen-Macauley. (On the other hand, if $I = \mathfrak{a}_1 \cap \mathfrak{a}_2 \cap \mathfrak{b}$, where \mathfrak{a}_1 , \mathfrak{a}_2 are complete intersections, depth R/\mathfrak{b} may be too small (cf. (2.5)). This generalizes Macauley's unmixedness theorem, which may be considered the degenerate case $\mathfrak{a}=R$.

Our method, which is quite elementary, was originally developed to answer some questions raised by Mumford about the critical locus of a map of smooth schemes. These applications are in section 5. Then, in analyzing our proof, we found that it was related to a result of Dubreil [1]. We have arranged the presentation around Dubreil's theorem.

Notation and terminology. By a local ring, we mean a noetherian local ring. Dimension (in symbol, dim) for a ring will mean the Krull dimension of the ring. Depth means, not as in [7], the length of a maximal regular sequence. We note here that if M is a finite module

^{*} This research was done at the University of Warwick with the support of the Science Research Council (U. K.) and the National Science Foundation (U. S. A)