Bounded polyharmonic functions and the dimension of the manifold

By

Norman MIRSKY, Leo SARIO, and Cecilia WANG

(Communicated by Professor Kusunoki, November 6, 1972)

Let H^2B be the class of bounded biharmonic nonharmonic functions, i.e., nondegenerate solutions of $\Delta^2 u = 0$, with Δ the Laplace-Beltrami operator $d\delta + \delta d$. Consider the punctured space $E_{\alpha}^N: 0 < |x| < \infty$, $x = (x^1, ..., x^N)$ with the metric $ds = |x|^{\alpha} |dx|$, a a constant. It was shown in Sario-Wang [1] that although E_{α}^N with N=2,3 carries H^2B -functions for infinitely many values of a, it tolerates no H^2B -functions for any a if $N \ge 4$. In the present paper we ask: What can be said about the class $H^k B$ of bounded nondegenerate polyharmonic functions of degree k, that is, solutions of $\Delta^k u = 0$? The answer turns out to be rewarding and puts the biharmonic case in proper perspective: There exist no H^kB -functions on E_{α}^N for any a if $N \ge 2k$.

For N < 2k there are infinitely many a for which these functions do exist, and for these a the generators of the space H^kB are surface spherical harmonics. In particular, this is true of H^2B -functions on Euclidean 2- and 3-spaces, as was recently shown in Sario-Wang [2].

If $H^k B \neq \emptyset$ on a given E^N_{α} , is the same true of $H^h B$ for any h > k? We shall show that, while this is so for every N if the metric of E^N_{α} is Euclidean, there are values of (N, α) for which it does not hold.

AMS 1970 subject classification 31B30.

The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.