Growth properties of solutions of second order elliptic differential equations

By

Kiyoshi Mochizuki

(Communicated by Prof. Mizohata, July 24, 1975)

Introduction

In this paper we consider the equation

(1)
$$-\sum_{j,k=1}^{n} D_{j}a_{jk}(x)D_{k}u - q(x)u + p(x)u = 0$$

in an exterior domain $\Omega \subset \mathbb{R}^n$, where $D_j = \partial_j + ib_j(x)$ with $\partial_j = \partial/\partial x_j$ and $i = \sqrt{-1}$, and the matrix $(a_{jk}(x))$ is uniformly positive definite in $x \in \Omega$ (the precise condition on the coefficients will be given later). We assume that $a_{jk}(x) \rightarrow \delta_{jk}$ (Kronecker's delta) as $|x| \rightarrow \infty$, that $\partial_k b_j(x)$ $-\partial_j b_k(x)$ and p(x) behave like $o(|x|^{-1})$ as $|x| \rightarrow \infty$ and that there exist some constants $0 < \gamma_0 < 1$, $\lambda_0 > 0$ and $r_0 > 0$ such that the domain $B(r_0)$ $= \{x; |x| > r_0\}$ is included in Ω and

(2)
$$2\gamma_0(\sum_{j,k} a_{jk}(x)\tilde{x}_j\tilde{x}_k)q(x) + |x|\sum_{j,k}\tilde{x}_ja_{jk}(x)\partial_k q(x) \ge \lambda_0 \text{ for } x \in B(r_0),$$

where $\tilde{x} = x/|x|$. The main purpose of the present paper is to derive a growth estimate at infinity of solutions u(x) of equation (1), from which will follow the uniqueness of L^2 -solutions of (1).

Equations of the form (1) appear frequently in applications. In particular, if we assume that $a_{jk}(x) = \delta_{jk}$ and $q(x) = \lambda - c(x)$, where $\lambda > 0$, then (1) becomes

(3)
$$-\sum_{j=1}^{n} D_{j}^{2} u + (c(x) + p(x))u - \lambda u = 0,$$