# On uniqueness of analytic solution for first order partial differential equations with degenerate principal symbols II 

By<br>Akira Nakaoka<br>(Communicated by prof. Mizohata, March 17, 1976)

## 1. Introduction

In the previous paper [5], the author treated the following equation;

$$
\begin{equation*}
a(x, y) \partial u / \partial x+b(x, y) \partial u / \partial y=c(x, y) u \tag{1.1}
\end{equation*}
$$

where $a(x, y), b(x, y)$ and $c(x, y)$ are holomorphic in a neighborhood of the origin of $\boldsymbol{C}^{2}$, and discussed the uniquness of the solution which is analytic in a neighborhood of the origin of $\boldsymbol{C}^{2}$. There, under the following hypothesis $(H)$;
(H) $\quad \partial^{p+q} c(0,0) / \partial x^{p} \partial y^{q}=0(p+q=0,1, \cdots, m-1)$ for some natural number $m$, and for this $m$ there exist $p$ and $q$ with $p+q=m$ such that $\partial^{m} c(0,0) / \partial x^{p} \partial y^{q} \neq 0$. Moreover, it holds $\partial^{p+q} a(0,0) / \partial x^{p} \partial y^{q}=\partial^{p+q} b(0,0) /$ $\partial x^{p} \partial y^{q}=0$,
we obtained.
Theorem. 1. Let $A(x, y), B(x, y)$ and $C(x, y)$ denote the homogeneous parts of degree $m+1$ of $a(x, y), b(x, y)$ and the homogeneous part of degree $m$ of $c(x, y)$ respectively, and set $A(x, y)=\omega(x, y) \alpha(x, y), B(x, y)=\omega(x, y)$ $\beta(x, y)$ and $C(x, y)=\omega(x, y) \gamma(x, y)$. Then if the equation

$$
\begin{equation*}
x \beta(x, y)-y \alpha(x, y)=0, \gamma(x, y)=1 \tag{1.2}
\end{equation*}
$$

has no solution, the solution of (1.1) which is analytic in a neighborhood is only zero.

The main aim of this paper is to extend the result of Theorem. 1 into the case of general several variables. Hence our concerning equation is as follows;

$$
\begin{equation*}
\sum_{j=1}^{n+1} a_{j}\left(x_{1}, \cdots, x_{n+1}\right) \partial u / \partial x_{j}=\omega\left(x_{1}, \cdots, x_{n+1}\right) u, \tag{1.3}
\end{equation*}
$$

where $a_{j}\left(x_{1}, \cdots, x_{n+1}\right)$ and $\omega\left(x_{1}, \cdots, x_{n+1}\right)$ are all holomorphic in a neighborhood of the origin of $\boldsymbol{C}^{n+1}$. Here, corresponding to $(H)$, we assume
(H.1) $\quad D^{\alpha} \omega(0, \cdots, 0)=0$ when $|\alpha| \leqq m-1$ for some natural number $m$

