Lie subalgebras of finite codimension in the restricted Poisson algebra

By

Nobutada NAKANISHI

(Received Feb. 27, 1976)

Introduction.

Let (M, ω) be a symplectic manifold which is defined by a symplectic form ω . It is well-known that the symplectic Lie algebra L on (M, ω) has the minimum transitive ideal L^* [1]. Let $\mathcal{D}(M)$ be the space of C^{∞} -functions with compact support. We define a subspace \mathcal{N} of $\mathcal{D}(M)$ by $\mathcal{N} = \{u \in \mathcal{D}(M); \int_{\mathcal{M}} u\omega^n = 0\}$, where ω^n is the volume element defined by the symplectic form ω , i.e., $\omega^n = \widehat{\omega \wedge \cdots \wedge \omega}$ $(n=1/2 \dim M)$. Now L^* is explicitly defined by $L^* = \{X \in L; i(X)\omega = du, u \in \mathcal{N}\}$.

It is well-known that \mathcal{N} gives rise to a Lie algebra with respect to the Poisson bracket and that it is isomorphic to L^* as Lie algebras. We will call this algebre \mathcal{N} the restricted Poisson algebra.

In the present paper, we prove the following fact.

Let \mathcal{N} be the restricted Poisson algebra on (M, ω) , and let $\{F_i\}_{1 \leq i \leq m}$ be a set of linearly independent linear functionals on \mathcal{N} which are continuous with respect to the canonical topology on \mathcal{N} . If $\mathscr{K} = \bigcap_{i=1}^{m} \operatorname{Ker} F_i$ is a Lie subalgebra (which is necessarily of finite codimension) of \mathcal{N} , then $A = \bigcup_{i=1}^{m} \operatorname{supp} F_i$ is a finite subset of M and

$$\mathscr{K} \subset \bigcap_{a \in A} \{ u \in \mathscr{N}; (du)_a = 0 \}.$$

In considering the problem above, we have been motivated by a theorem of W. D. Curtis and F. R. Miller [3]. Indeed let M be a C^{∞} -manifold and $\Gamma_{c}(TM)$ the Lie algebra of all C^{∞} -vector fields with compact support on M. Then they obtained an analogous result as ours with respect to a finite set of linear functionals on $\Gamma_{c}(TM)$, which defines a Lie subalgebra of $\Gamma_{c}(TM)$.

Let L_o be the ideal consisting of all vector fields of L which have compact support. This ideal L_o corresponds to the Lie algebra $\Gamma_c(TM)$ studied by Curtis and Miller, but L_o has, in general, a Lie subalgebra of finite codimension which is transitive on M. Therefore we consider \mathcal{N} or equivalently L^* instead of L_o .

We now proceed to the description of each section. In §1, the precise