Lie subalgebras of finite codimension in the restricted Poisson algebra

By
Nobutada NAKANISHI

(Received Feb. 27, 1976)

Introduction.

Let (M, ω) be a symplectic manifold which is defined by a symplectic form ω. It is well-known that the symplectic Lie algebra L on (M, ω) has the minimum transitive ideal L^{*} [1]. Let $\mathscr{D}(M)$ be the space of C^{∞}-functions with compact support. We define a subspace \mathscr{N} of $\mathscr{D}(M)$ by $\mathscr{N}=\left\{u \in \mathscr{D}(M) ; \int_{M} u \omega^{n}\right.$ $=0\}$, where ω^{n} is the volume element defined by the symplectic form ω, i.e., $\omega^{n}=\overbrace{\omega \wedge \cdots \wedge \omega}^{n}(n=1 / 2 \operatorname{dim} M)$. Now L^{*} is explicitly defined by $L^{*}=\{X \in L$; $i(X) \omega=d u, u \in \mathscr{N}\}$.

It is well-known that \mathscr{N} gives rise to a Lie algebra with respect to the Poisson bracket and that it is isomorphic to L^{*} as Lie algebras. We will call this algebre \mathscr{N} the restricted Poisson algebra.

In the present paper, we prove the following fact.
Let \mathscr{N} be the restricted Poisson algebra on (M, ω), and let $\left\{F_{i}\right\}_{1 \leq i \leq m}$ be a set of linearly independent linear functionals on \mathscr{N} which are continuous with respect to the canonical topology on \mathscr{N}. If $\mathscr{K}=\bigcap_{i=1}^{m} \operatorname{Ker} F_{i}$ is a Lie subalgebra (which is necessarily of finite codimension) of \mathscr{N}, then A $=\bigcup_{i=1}^{m} \operatorname{supp} F_{i}$ is a finite subset of M and

$$
\mathscr{K} \subset \bigcap_{a \in A}\left\{u \in \mathscr{N} ;(d u)_{a}=0\right\} .
$$

In considering the problem above, we have been motivated by a theorem of W.D.Curtis and F.R.Miller [3]. Indeed let M be a C^{∞}-manifold and $\Gamma_{c}(T M)$ the Lie algebra of all C^{∞}-vector fields with compact support on M. Then they obtained an analogous result as ours with respect to a finite set of linear functionals on $\Gamma_{c}(T M)$, which defines a Lie subalgebra of $\Gamma_{c}(T M)$.

Let L_{o} be the ideal consisting of all vector fields of L which have compact support. This ideal L_{o} corresponds to the Lie algebra $\Gamma_{c}(T M)$ studied by Curtis and Miller, but L_{o} has, in general, a Lie subalgebra of finite codimension which is transitive on M. Therefore we consider \mathscr{N} or equivalently L^{*} instead of L_{0}.

We now proceed to the description of each section. In $\S 1$, the precise

