On the generalized local cohomology and its duality

By

Naoyoshi SUZUKI

(Communicated by Prof. M. Nagata, April 2, 1976)

§ 0. Introduction.

Let (R, \mathfrak{M}, K) be a commutative, Noetherian local ring with the non-zero multiplicative identity and all the modules considered be unitary throughout.

The main purpose of this paper is to study the generalized local cohomology $H_{\mathfrak{m}}^{i}(^{*},^{*})$ introduced by J. Herzog:

$$H^{i}_{\mathfrak{M}}(M, N) = \underset{-}{\underset{-}{\lim}} \operatorname{Ext}^{i}_{R}(M/\mathfrak{M}^{m}M, N)$$

for R-modules M and N, [5] (1. 1. 1). This is in fact a generalized one of the usual local cohomology $H_{\mathfrak{m}}^{i}(*)$: for any R-module N, $H_{\mathfrak{m}}^{i}(R, N) = H_{\mathfrak{m}}^{i}(N)$.

As is well known, the vanishing (or non-vanishing) of the local cohomology module $H^i_{\mathfrak{m}}(N)$ of a finitely generated (abbreviated to f.-g. from now on) R-module N reflects some important character of N, say dimension and depth of N. It is quite reasonable to ask when the generalized local cohomology module $H^i_{\mathfrak{m}}(M, N)$ of R-modules M and N vanishes (or never.)

Our first result, Theorem (2. 3), states that the lower bound of i's for which $H^i_{\mathbb{R}}(M, N) \neq 0$ (for f.-g. non-zero modules M and N over R) coincides with the depth_R N. As to the upper bound, we must require some restrictions on either M or N: for all sufficiently large i's $H^i_{\mathbb{R}}(M, N) = 0$ if and only if either $Pd_R(M) < \infty$ or $Id_R(N) < \infty$, (2. 4). Where $Pd_R(\text{resp. } Id_R)$ denotes the projective (resp. injective) dimension over R. We shall mainly treat the case when $Pd_R(M) < \infty$ in this paper.