A uniqueness theorem for functions holomorphic in a half-plane

By

J. S. Hwang
(Communicated by Prof. Y. Kusunoki, Oct. 15, 1980, Revised Feb. 25, 1981)

1. Introduction

In [1, p. 75], R. P. Boas states and proves the following uniqueness theorem.
Theorem 1. If $f(z)$ is an entire function of exponential type and if for some $0,\left|f\left(r e^{i \theta}\right)\right| \leq e^{-A(r) r}$, where $\lim _{r \rightarrow \infty} A(r)=\infty$, then $f(z)=0$ identically.

This theorem shows that if the function $f(z)$ tends to zero sufficiently rapidly along some ray $\arg z=0$, then it must be identically zero. Instead of a ray, in [4, Theorem 1], we have extended the same result to an arbitrary curve having a limit point at infinity. Moreover, the same type of uniqueness theorems can also be considered in a half-plane instead of the entire plane, see [3, 6]. In this connection, instead of a curve, we can also regard only a sequence of Jordan arcs tending to the point at infinity, see [5]. The shape of Jordan arcs can behave in different ways. The one considered in [5] looks like arc, and the other which we are going to discuss looks like radial. In this case, our results are somewhat equivalent to those of V. I. Gavrilov [2] and D. C. Rung [8] in the unit disk.

To introduce our results, let us begin with the following two definitions.
Definition 1. Let $H=\{z: \operatorname{Re} z>0\}$ be the right halfplane and let $\left\{\gamma_{n}\right\}$ be a sequence of disjoint Jordan arcs in H. Denote α_{n} the angle subtended by γ_{n} at the origin and set

$$
l_{n}=\min _{z \in \gamma_{n}}|z|, L_{n}=\max _{z \in \gamma_{n}}|z|, 0_{n}=\min _{z \in \gamma_{n}} \arg z .
$$

We call $\left\{\gamma_{n}\right\}$ a radial-like sequence if it tends to infinity nontangentially and satisfies the following two conditions

$$
\begin{equation*}
\lim _{n \rightarrow \infty} l_{n}=\lim _{n \rightarrow \infty} L_{n}=\infty, \quad \text { and } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
0<\lim _{n \rightarrow \infty} l_{n} / L_{n}=\varlimsup_{n \rightarrow \infty} l_{n} / L_{n}<1 . \tag{ii}
\end{equation*}
$$

Definition 2. Let $\left\{\gamma_{n}\right\}$ be a radial-like sequence and let α_{0} be a fixed angle sati-

