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§0. Introduction

Consider the following stochastic differential equation (SDE) on R4
dxi= 3 ah(X(£))od WH(1) +b(X(t))d
p=1

(0.1)
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X(0)=xeR¢ i=1,2,...,d

with sufficiently smooth functions oj(x) and b'(x) on R4. Here, -dW*(f) and
-dW¥A(t) denote the stochastic differentials of the Stratonovich type and of the Ité
type respectively, and W(t)=W(t, w)=(WA(t)), where W(t, w)=w(t), we W}, is the
canonical realization of the r-dimensional Wiener process on the r-dimensional
Wiener space (W§, P%): W is the space of all continuous functions w: [0, co)— R4
such that w(0)=0 and PV is the r-dimensional Wiener measure on W§. Introducing
vector fields A,, A4,,..., 4, on R? by

d .
A,,(x)=i§]a;,(x)—a%i—, B=1,2,0,r

Ao(x)= 3 bi(x) -
O(X) - El (x) W ’
the equation (0.1) is also denoted by

) dX(t) = ,,2’1 Ap(X(2))od WE(t) + Ao( X (£))dt
0.1) =
X(0)=x.
If 6j(x) and b(x) are C® with bounded derivatives of all orders, the solution

X(t, x, w) exists globally and for a.a.w(P%), x—X(t, x, w) is a diffecomorphism of
R for each t 20 (cf. [1], [3]).



