Projective structures on Riemann surfaces and Kleinian groups

By

Hiroshige Shiga

§1. Introduction and notations.

Let S be a compact Riemann surface of genus $p \ge 2$, and let $\pi: U \rightarrow S$ be a holomorphic universal covering of S with the covering transformation group Γ , where U is the upper half plane $\{z \in \mathbb{C}: \text{Im } z > 0\}$. Then, Γ is a finitely generated Fuchsian group of the first kind on U and consists of hyperbolic Möbius transformations. We denote by $B_2(L, \Gamma)$ the Banach space of all holomorphic quadratic differentials for Γ defined on the lower half plane L. Namely, $B_2(L, \Gamma)$ is the set of all holomorphic functions ϕ on L satisfying

(1.1)
$$\phi(r(z))r'(z)^2 = \phi(z), \quad \text{for all } z \in L, r \in \Gamma,$$

with the norm

$$||\phi||_L = \sup_{z \in L} (2 \operatorname{Im} z)^2 |\phi(z)|$$
.

More generally, for a Kleinian group G and for a G-invariant union Δ of components of G we denote by $B_2(\Delta, G)$ the Banach space consisting of all holomorphic functions ψ on Δ satisfying

$$\begin{aligned} \psi(g(z))g'(z)^2 &= \psi(z) , \quad \text{for all } z \in \mathcal{A}, g \in G , \\ \psi(z) &= O(|z|^{-4}) , \quad z \to \infty , \quad \text{if } \infty \in \mathcal{A} \end{aligned}$$

with the norm

and

$$||\psi||_{\mathfrak{a}} = \sup_{z \in \mathfrak{a}} \rho_{\mathfrak{a}}(z)^{-2} |\psi(z)| ,$$

where $\rho_{\Delta}(z) |dz|$ is the Poincaré metric on the component of Δ containing z.

For every ϕ in $B_2(L, \Gamma)$, there exists a locally schlicht meromorphic function f_{ϕ} on L with $\{f_{\phi}, z\} = \phi(z)$; here $\{f, \cdot\}$ means the Schwarzian derivative of f

$$\{f, \cdot\} = (f''/f')' - (f''/f')^2/2.$$

Throughout this paper, we shall denote by W_{ϕ} ($\phi \in B_2(L, \Gamma)$) a locally schlicht meromorphic function on L which is uniquely determined by ϕ such that

$$\{W_{\phi}, z\} = \phi(z)$$

Received February 8, 1986