On a problem of hypoellipticity

Dedicated to Professor SIGERU MIZOHATA on his sixtieth birthday

By

Haruki NINOMIYA*)

§1. Introduction.

In the work [11], L. Schwartz has introduced the notion of *hypoellipticity*, and proposed the following question (see p. 146, *Remarques* 2°).

Let a(x, D) be a differential operator, and suppose that it has the following property: there is a positive integer l such that every C^{l} solution u(x) of

a(x, D)u(x)=0

belongs to C^{∞} . Then, can we claim that a(x, D) is hypoelliptic?

We reformulate his question in the following manner.

Let P(x, D) be a differential operator of order $m \ge 1$ in an open set Ω in \mathbb{R}^n , with infinitely differentiable coefficients.

Problem I. Assume that P(x, D) has the following property: given any open subset ω of Ω , there is an integer $l \ge m$ such that every C^{l} solution u(x) of

$$(1) P(x, D)u(x)=0$$

in ω belongs to $C^{\infty}(\omega)$. Then, is P(x, D) hypoelliptic in Ω ?

Problem II. Let P_0 be a point of Ω . Assume that P(x, D) has the following property: there exist an integer $l \ge m$ and a neighborhood \mathcal{U} of P_0 such that every C^l solution u(x) of (1) in \mathcal{U} belongs to $C^{\infty}(\mathcal{U})$. Then, is P(x, D) hypoelliptic at P_0 ?

Here P(x, D) is said to be hypoelliptic at P_0 if there is a neighborhood CVof P_0 such that, given any distribution u in CV, u is a C^{∞} function in every neighborhood of P_0 where this is true of P(x, D)u (we recall that P(x, D) is said to be hypoelliptic in Ω if, given any distribution u in Ω , u is a C^{∞} function in every open set where this is true of P(x, D)u).

We know that both of Problems I and II are positive when the coefficients of P(x, D) are constants. But we observe that these are negative in general in case of variable ones. In fact, let $P(x, D) = x^{\alpha}P_0(x, D)$, where α is an arbitrary complex constant such that $|\alpha| \ge m+1$ and $P_0(x, D)$ is an arbitrary elliptic

^{*)}Communicated by Prof. S. Mizohata, May 13, 1986