Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra

By

Kiyokazu Suto

Introduction.

Let $\mathfrak{g}_{\mathbf{R}}$ be a Kac-Moody algebra over the real number field \mathbf{R} with a symmetrizable generalized Cartan matrix (GCM), and $\mathfrak{h}_{\mathbf{R}}$ the Cartan subalgebra of $\mathfrak{g}_{\mathbf{R}}$. Then, the Kac-Moody algebra \mathfrak{g} over \mathbf{C} corresponding to the same GCM and its Cartan subalgebra \mathfrak{h} are given by

$$\mathfrak{g} = \boldsymbol{C} \otimes_{\boldsymbol{R}} \mathfrak{g}_{\boldsymbol{R}} \quad \text{and} \quad \mathfrak{h} = \boldsymbol{C} \otimes_{\boldsymbol{R}} \mathfrak{h}_{\boldsymbol{R}},$$

respectively. We denote by \mathbf{t} the unitary form of \mathbf{g} , and put $\mathbf{t}_{R} = \mathbf{t} \cap \mathbf{g}_{R}$ (for the precise definition, see [8] and [7]).

In [8] and [7], we constructed and studied groups K^A and K_R^A consisting of unitary operators on a Hilbert space $H(\Lambda)$ which is a completion of the integrable highest weight module $L(\Lambda)$ for \mathfrak{g} with dominant integral highest weight $\Lambda \in \mathfrak{h}_R^*$. These groups are generated by naturally defined exponentials of elements in \mathfrak{t} and \mathfrak{t}_R respectively. In this paper, we show that the exponential map exp: $\mathfrak{t} \to U(H(\Lambda))$ can be extended to a certain completion $H_1^*(\mathrm{ad})$ of \mathfrak{t} . We show, in prallel, that taking the adjoint representation of \mathfrak{g} on itself in place of the highest weight representation on $L(\Lambda)$, and completing the representation space \mathfrak{g} to a Hilbert space $H(\mathrm{ad})$, the exaponintial map exp: $H_1^*(\mathrm{ad}) \mapsto B(H(\mathrm{ad}))$ can be defined naturally. Here U(H) is the group of unitary operators and B(H) is the algebra of bounded operators on a Hilbert space H. Note that the adjoint representation is quite different from $L(\Lambda)$ at the point that the set of its weights is unbounded both in positive and negative directions when \mathfrak{g} is of infinite-dimension. For these exponentials, we define the differentiable vectors and the analytic vectors, and prove some properties of them, which we expect to utilize for studying fine structures of K^A and K_R^A .

Let us explain in more detail. We denote by $\underline{\mathfrak{g}}$ the infinite direct products of $\mathfrak{g}^0=\mathfrak{h}$ and the root spaces $\mathfrak{g}^{\mathfrak{a}}$ over α , and by $\underline{L}(\Lambda)$ that of all the weight spaces $L(\Lambda)_{\mu}$ over μ , respectively. \mathfrak{g} acts on \mathfrak{g} and $\underline{L}(\Lambda)$ naturally. Let $H(\mathfrak{ad})$ and $H(\Lambda)$ be the

Communicated by Prof. Ikebe, June 3, 1987