Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra

By

Kiyokazu Suto

Introduction.

Let $g_{\boldsymbol{R}}$ be a Kac-Moody algebra over the real number field \boldsymbol{R} with a symmetrizable generalized Cartan matrix (GCM), and $\mathfrak{H}_{\boldsymbol{R}}$ the Cartan subalgebra of $\mathrm{g}_{\boldsymbol{R}}$. Then, the Kac-Moody algebra g over \boldsymbol{C} corresponding to the same GCM and its Cartan subalgebra \mathfrak{G} are given by

$$
\mathfrak{g}=\boldsymbol{C} \otimes_{\boldsymbol{R}} \mathfrak{g}_{\boldsymbol{R}} \quad \text { and } \quad \mathfrak{h}=C \otimes_{\boldsymbol{R}} \mathfrak{h}_{\boldsymbol{R}}
$$

respectively. We denote by \mathfrak{t} the unitary form of \mathfrak{g}, and put $\boldsymbol{f}_{\boldsymbol{R}}=\boldsymbol{f} \cap g_{\boldsymbol{R}}$ (for the precise definition, see [8] and [7]).

In [8] and [7], we constructed and studied groups K^{4} and K_{R}^{4} consisting of unitary operators on a Hilbert space $H(\Lambda)$ which is a completion of the integrable highest weight module $L(\Lambda)$ for g with dominant integral highest weight $\Lambda \in \mathfrak{G}_{R}^{*}$. These groups are generated by naturally defined exponentials of elements in \mathfrak{t} and $\mathfrak{f}_{\boldsymbol{R}}$ respectively. In this paper, we show that the exponential map exp: $\boldsymbol{t} \boldsymbol{U}(H(\Lambda))$ can be extended to a certain completion $H_{1}^{u}(\mathrm{ad})$ of \boldsymbol{Z}. We show, in prallel, that taking the adjoint representation of g on itself in place of the highest weight representation on $L(\Lambda)$, and completing the representation space g to a Hilbert space $H(\mathrm{ad})$, the exaponintial map exp: $H_{1}^{u}(\mathrm{ad}) \mapsto \boldsymbol{B}(H(\mathrm{ad}))$ can be defined naturally. Here $\boldsymbol{U}(H)$ is the group of unitary operators and $\boldsymbol{B}(H)$ is the algebra of bounded operators on a Hilbert space H. Note that the adjoint representation is quite different from $L(\Lambda)$ at the point that the set of its weights is unbounded both in positive and negative directions when \mathfrak{g} is of infinite-dimension. For these exponentials, we define the differentiable vectors and the analytic vectors, and prove some properties of them, which we expect to utilize for studying fine structures of K^{4} and $K_{\boldsymbol{R}}^{4}$.

Let us explain in more detail. We denote by \underline{g} the infinite direct products of $\mathrm{g}^{0}=\mathfrak{h}$ and the root spaces g^{α} over α, and by $\underline{L}(\Lambda)$ that of all the weight spaces $L(\Lambda)_{\mu}$ over μ, respectively. g acts on $\underline{\mathfrak{g}}$ and $\underline{L}(\Lambda)$ naturally. Let $H(\mathrm{ad})$ and $H(\Lambda)$ be the

