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§0. Introduction

In the present paper, we will present systematical arguments on extensions of
higher derivations for algebraic field extensions of positive characteristics. Argu-
ments on ordinary derivations are included as special cases.

Assume that a higher derivation d is given in a field K of positive charac-
teristic. Let L be an algebraic extension of K. If d is extended to higher deriva-
tions of L, we denote one of them by d’'.

In §2, we make basic considerations on relationship among constant fields
and value domains, of d and d’. In §3, we seek conditions that d can be extended
to higher derivations of L. In the case where d is an iterative higher derivation of
finite rank we get a conclusion successfully and then we get a criteria for L to be
maximal in the set of algebraic extensions of K to which d can be extended. In §4
and §5, after we discuss conditions that the extension of d is unique and conditions
that the extension of d keeps the property of being iterative when d is iterative, we
show that in the case where d is a higher derivation of infinite rank, there exists
the largest algebraic extension of K to which d can be extended. Finally in §6, we
discuss non-integrable elements. Actually, the corollary to Theorem 6-1 about
this matter for ordinary derivations, has given the author a motivation to start
this work. The author has tried to find a literature in which it is explicitly
stated. But he has not been able to find one so far, except for that R. Baer in
his paper [1] touched upon it under some restricted conditions. We conclude
§6 in proving that if a higher derivation d of K is iterative and of infinite
rank, then each non-integrable element of an arbitrary order in K is non-
inrtegrable for every extension d’ of d on an algebraic extension of K, as long as
the index of d’ equals the index of d. (For definitions of a non-integrable
element and the index, see §l.) This may correspond to the fact that an
integration of a rationally non-integrable element is transcendental, in the case of
characteristic 0.
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