Some Numerical invariants of hyperelliptic fibrations

By

Shigeru MATSUSAKA

0. Introduction

In this paper we shall define certain numerical invariants of hyperelliptic fibrations and study their properties. A proper surjective morphism $\Pi: X \to C$ is called a *hyperelliptic fibration of genus g* if X is a smooth surface, C is a smooth curve and the general fiber of Π is a hyperelliptic curve of genus g.

Hyperelliptic fibrations of genus 2 have been studied by several mathematicians. Ueno [U] and Xiao [X] proved that the *topological index* $i_{top}(x) = \frac{1}{3}(c_1(X)^2 - 2c_2(X))$ is non-positive if X has a hyperelliptic fibration of genus 2 over a smooth compact curve.

In this paper we will show the following inequalities for every relatively minimal hyperelliptic fibration $\Pi: X \to C$ over a smooth compact curve:

$$\frac{-g-1}{2g+1} \cdot \sum_{t \in C} e_t(X) \le i_{top}(X) \le \frac{g^2 - 2g - 1}{2g+1} \cdot \sum_{t \in C} e_t(X) \qquad \dots (0.1.1)$$

if g is even,
$$\frac{-g-1}{2g+1} \cdot \sum_{t \in C} e_t(X) \le i_{top}(X) \le \frac{g^2 - 2g}{2g+1} \cdot \sum_{t \in C} e_t(X) \qquad \dots (0.1.2)$$

if g is odd.

where $e_t(X) = (Euler number of \Pi^{-1}(t)) - (2 - 2g)$. (See Theorem 4.0.1 below).

To prove these inequalities, we need a section D of $(\overset{g}{A}\Pi_*\omega_{X/C})^{\otimes 4(2g+1)}$.

For every hyperelliptic fibration $\Pi: X \to C$, there exist a \mathbf{P}^1 -bundle $p: Y \to C$ and a double covering $\hat{\Pi}: \hat{X} \to Y$ such that \hat{X} is birational to X over C. There exists an open set C^0 in C which satisfies the following:

i) $p^{-1}(C^0)$ is isomorphic to $\mathbf{P}^1 \times C^0$;

ii) $\Pi^{-1}(C^0)$ can be identified with the closure of $\{(x, t, y) \in \mathbb{C} \times C \times \mathbb{C}; y^2 = \varphi(x, t)\}$, where x is an inhomogeneous coordinate of \mathbb{P}^1 and φ is a polynomial of x of degree 2g + 1 or 2g + 2 with coefficients in the rational function field of C^0 .

The section D of $(\stackrel{q}{\Lambda}\Pi_*\omega_{X/C})^{\otimes 4(2g+1)}$ is defined to be

Received March 26 1988