Absence of the affine lines on the homology planes of general type

By

M. MIYANISHI AND S. TSUNODA

Introduction

Let X be a nonsingular algebraic surface defined over the complex field C. We call X a homology plane (resp. Q-homology plane) if the homology groups $H_i(X; \mathbb{Z})$ (resp. $H_i(X; \mathbb{Q})$) vanish for all i > 0. A purpose of the present article is to show the following result.

Main Theorem. Let X be a Q-homology plane of Kodaira dimension 2. Then there lies no curve C on X which is topologically isomorphic to the affine line A^1 .

The core of a proof is to show that X and X - C are respectively embedded as Zariski open sets into almost minimal pairs (cf. [9]; see below) and that the inequality of Miyaoka-Yau type (cf. [5], [10]), after a relevant modification, can be applied to derive a contradiction if one assumes the existence of a curve topologically isomorphic to A^{1} .

M. Zaidenberg [11] informed us of the following theorem which overlaps our main theorem and whose proof is to be published in Math. USSR, Izvestija.

Theorem of Zaidenberg. Let X be a homology plane which is not isomorphic to A^2 . Then the following conditions are equivalent to each other:

(1) There exists a curve Γ_0 in X which is isomorphic to A^1 ;

(2) There exists a simply connected curve Γ_0 in X which is a posteriori isomorphic to A^1 ;

(3) There exists an isotrivial family of curves $X \rightarrow C$, which is not a singular C^{**} -family;

(4) There exists a regular map $X \to \mathbf{P}^1$ with \mathbf{C}^* as a general fiber;

(5) X has Kodaira dimension 1.

1. Almost minimal surfaces and inequalities of Miyaoka-Yau type

Let (V, D) be a pair consisting of a nonsingular projective surface V and a reduced effective divisor D with simple normal crossings. Denote by K_V the

Communicated by Prof. K. Ueno, October 5, 1989