On calculation of $L_{K}(1, \chi)$ for some Hecke characters

By
Yoshihito HARA

§ 1. Introduction

Let $L_{K}(s, \chi)$ be the Hecke L-function for a non-trivial character χ of an ideal class group of an algebraic number field K. The purpose of the present paper is to express $L_{K}(1, \chi)$ in a form effective for numerical calculation by computers in the case where K and χ satisfy the following two conditions:
(i) K is a quadratic extension field of a totally real algebraic number field and K has exactly two real places.
(ii) χ ramifies at all the two real places.

The methods of ours are the same as [Ko], [Ka] and [G], i.e., a generalization of the classical Kronecker's limit formula, and Hecke's method described in $\S 3$ and $\S 5$ of [Si1]. However, we calculate, rather than $L_{K}(1, \chi)$ itself, a suitable coefficient $\kappa_{K}(C)$ of $\zeta_{K}(s, C)$ in the Taylor expansion at $s=0$, where $\zeta_{K}(s, C)$ is the zeta function of an ideal class C of K (see (2.1)). In fact, it suffices to obtain $\kappa_{K}(C)$ for our purpose, so the statements will be described for $\kappa_{K}(C)$.

Stark-Shintani conjecture, which is one of our motivation of the present paper, predicts a kind of arithmeticity for $L_{K}(1, \chi)$ ([St1], [St2], [Sh5] and [T]). However, the conjecture has been unsolved yet except some special cases. In fact, the case where K has exactly one imaginary place and χ ramifies at all real places, which is described in [St2], is unsolved one. If K is of degree 4 over \boldsymbol{Q}, this case is contained in the case (1.1) and one can use our results to give numerical datas in the case.

Let us explain the contents in more detail. In § 2, we recall some facts on the order of $\zeta_{k}(s, C)$ at $s=0$ for a general algebraic number field k and prove a kind of transformation formula for $\zeta_{k}(s, C)$ (Proposition 1). It plays the same role as the formula (92) in [Sil, p. 140], which has been used in [Ko], [Ka] and [G]. By virture of this formula, we can despense with Gauss sums and the assumption on the primitivity of χ, so the value $\kappa_{K}(C)$ seems to be the more natural in our computation than $L_{K}(1, \chi)$. In § 3 , we define a harmonic Hilbert modular function $f_{\mathrm{a} \times \mathrm{b}}(a, b ; z)$ in (3.1), which is a generalization of the

