Quasi sure quadratic variation of smooth martingales

By

Jiagang REN*

1. Introduction

Suppose that $M = \{M_t, t \in I\}$ is a continuous L^p -martingale $(p \ge 2)$, where I is an interval of $\mathbf{R}_+ = [0, \infty)$ (may be \mathbf{R}_+ itself). By the well-known Doob-Meyer decomposition theorem, there exists a unique increasing process $\langle M \rangle = \{\langle M \rangle_t, t \in I\}$ such that $M^2 - \langle M \rangle$ is a continuous $L^{p/2}$ -martingale. Moreover, P. W. Millar [12] and D. Nualart [13] showed that the process $\langle M \rangle$ can be obtained as the $L^{p/2}$ -limit of sums of the form $\sum M(\Delta_i)$, where $\{\Delta_i\}$ is a subdivision of the interval I, as $\max_i |\Delta_i| \to 0$.

In the present paper we propose to study the quasi sure properties of the quadratic variation of *smooth martingales*, a notion introduced recently by P. Malliavin and D. Nualart [9]. We shall prove that the process of the quadratic variation of a smooth martingale admits an ∞ -modification, which can be constructed as the quasi sure limit of sums of the form $\sum M(\Delta_i)$. Our tool is the quasi sure version of Kolmogorov's criterion for the continuity of trajectories of stochastic processes (cf. [17]). Necessary estimations which enable us to apply this criterion will be obtained. This makes the subject of section 3. In section 4 we will be able to extend the results of section 3 to the case of two-parameter smooth martingales. At last in section 5 we discuss possible extensions and applications. We prove, in particular, that the quadratic variation of the Brownian motion is quasi surely t.

The main results of this paper were announced in [21].

2. Preliminaries

Now let us recall and fix some notations and notions. We shall work on the probability space (X, H, μ) , where X is the space of continuous maps from [0, 1] to \mathbf{R}^d , null at zero; H is the usual Cameron-Martin subspace and μ the standard Wiener measure. Denote by W_{2r}^p the Sobolev space of order 2r and of power p over X and W_{∞} their intersection over indexes p>1 and r ≥ 0 . For any natural number r, two equivalent norms in W_{2r}^p are defined

^{*}JSPS Program; Supported also by Fok Ying Tong Education Foundation and NSF of China Communicated by Prof. S. Watanabe, February 1, 1993