On hyperplane sections of reduced irreducible varieties of low codimension

By
Jürgen Herzog, Ngô Viêt Trung* and Giuseppe Valla

1. Introduction

Let X be an arithmetically Cohen-Macaulay variety (subscheme) of codimension 2 in $\boldsymbol{P}^{n}=\boldsymbol{P}^{n}(k)$, where k is an algebraically closed field. Let I $=I(X)$ denote the defining ideal of X in the polynomial ring $R=k\left[x_{0}, \cdots, x_{n}\right]$. By the Hilbert-Burch theorem we may assume that I is minimally generated by the maximal minors of an $r-1$ by r matrix $\left(g_{i j}\right)$ of homogeneous elements of R. Let a_{1}, \cdots, a_{r} be the degree of these generators. Then I has a minimal free resolution of the form

$$
0 \longrightarrow \oplus_{i=1}^{r-1} R\left(-b_{i}\right) \xrightarrow{\left(g_{i j}\right)} \oplus_{j=1}^{r} R\left(-a_{j}\right) \longrightarrow I \longrightarrow 0,
$$

where b_{1}, \cdots, b_{r-1} are positive integers with $\sum b_{i}=\sum a_{j}$. Put $u_{i j}=b_{i}-a_{j}$. We have $\operatorname{deg} g_{i j}=u_{i j}$, if $u_{i j}>0$ and $g_{i j}=0$ if $u_{i j} \leq 0$. Under the assumptions $a_{1} \leq \cdots$ $\leq a_{r}$ and $b_{1} \leq \cdots \leq b_{r-1}$, the matrix $\left(u_{i j}\right)$ is uniquely determined by X, and it carries all the numerical data about X. One calls $\left(u_{i j}\right)$ the degree matrix of X [5].

In [24] Sauer proved that an arithmetically Cohen-Macaulay curve in \boldsymbol{P}^{3} is smoothable if and only if $u_{i i+2} \geq 0$ for $i=1, \cdots, r-2$. At a first glance Sauer's result is surprising in so far as smoothability should solely depend on the Hilbert function of the curve (which of course is determined by the degree matrix but not vice versa). However, as observed by Geramita and Migliore [13], this numerical condition of the degree matrix can indeed be expressed in terms of the Hilbert function of C.

On the other hand, as noted in [13], Sauer ([24]) proved, though not explicitly stated, that a matrix of integers $u_{i j}=b_{i}-a_{i}$, where $a_{1} \leq \cdots \leq a_{r}$ and $b_{1} \leq \cdots \leq b_{r-1}$ are two sequences of positive integers with $\sum a_{i}=\sum b_{j}$, is the degree matrix of a smooth arithmetically Cohen-Macaulay curve in \boldsymbol{P}^{3} if and only if $u_{i i+2}>0$ for $i=1, \cdots, r-2$. Here the reference to the stronger numerical invariant, the degree matrix, is indispensible, since the Hilbert function

[^0]
[^0]: *This author would like to thank the Alexander von Humboldt Foundation and he University of Essen for support and hospitality during the preparation of this paper.
 Communicated by Prof. K. Ueno, September 17, 1992, Revised August 18, 1993

