Minimization of the embeddings of the curves into the affine plane

By
Masayoshi Miyanishi

0. Introduction

Let C be a smooth affine algebraic curve with only one place at infinity defined over an algebraically closed field k of characteristic zero; we also call C a once punctured smooth algebraic curve. Assume that C is embedded into the affine plane \mathbf{A}^{2} as a closed curve. The image of C by an algebraic automorphism of \mathbf{A}^{2} is again a curve of the same nature as C. One may then ask what is the smallest among the degrees of $\varphi(C)$ when φ ranges over automorphisms of \mathbf{A}^{2}. We say that $\varphi(C)$ is a minimal embedding of C if the degree of $\varphi(C)$ is the smallest.

The question was first treated by Abhyankar-Moh [1] and Suzuki [12] in the case of genus g of C is zero. Namely, a minimal embedding of the affine line is a coordinate line. The cases $g=2,3,4, \ldots$ were treated by Neumann [8] by topological methods and by A'Campo-Oka [3] depending on Tschirnhausen resolution tower.

We shall here propose a different algebro-geometric approach based on the classification of degenerations of curves, which enables us to describe an automorphism φ of \mathbf{A}^{2} minimizing the degree of $\varphi(C)$.

Our theorem is the following:
Theorem. Let C be a once punctured smooth algebraic curve of genus g, which is embedded into the affine plane $\mathbf{A}^{2}=\operatorname{Spec} k[x, y]$ as a closed curve defined by $f(x, y)=0$. Then there exists new coordinates u, v of \mathbf{A}^{2} such that
(1) $k[x, y]=k[u, v]$, and
(2) $h(u, v):=f(x(u, v), y(u, v))$ and $e=\operatorname{deg} h(u, v)$ are given as follows if $g \leq 4$;

Case $g=0: \quad e=1$ and $h=u$.
Case $g=1: \quad e=3$ and $h=v^{2}-\left(u^{3}+a u+b\right)$ with $a, b \in k$.
Case $g=2: \quad e=5$ and $h=v^{2}-\left(u^{5}+a u^{3}+b u^{2}+c u+d\right)$ with a, b, c, $d \in k$.
Case $g=3$: There are three types:
(1) $e=4$ and $h=v^{3}+g_{1}(u) v-\left(u^{4}+g_{2}(u)\right)$ with $g_{i}(u) \in k[u]$ and $\operatorname{deg} g_{i}(u) \leq 2$ for $i=1,2$.

[^0]
[^0]: Communicated by Prof. K. Ueno, March 3, 1995

