Minimization of the embeddings of the curves into the affine plane

By

Masayoshi MIYANISHI

0. Introduction

Let C be a smooth affine algebraic curve with only one place at infinity defined over an algebraically closed field k of characteristic zero; we also call C a once punctured smooth algebraic curve. Assume that C is embedded into the affine plane A^2 as a closed curve. The image of C by an algebraic automorphism of A^2 is again a curve of the same nature as C. One may then ask what is the smallest among the degrees of $\varphi(C)$ when φ ranges over automorphisms of A^2 . We say that $\varphi(C)$ is a minimal embedding of C if the degree of $\varphi(C)$ is the smallest.

The question was first treated by Abhyankar-Moh [1] and Suzuki [12] in the case of genus g of C is zero. Namely, a minimal embedding of the affine line is a coordinate line. The cases g = 2, 3, 4, ... were treated by Neumann [8] by topological methods and by A'Campo-Oka [3] depending on Tschirnhausen resolution tower.

We shall here propose a different algebro-geometric approach based on the classification of degenerations of curves, which enables us to describe an automorphism φ of \mathbf{A}^2 minimizing the degree of $\varphi(C)$.

Our theorem is the following:

Theorem. Let C be a once punctured smooth algebraic curve of genus g, which is embedded into the affine plane $A^2 = \operatorname{Spec} k[x, y]$ as a closed curve defined by f(x, y) = 0. Then there exists new coordinates u, v of A^2 such that

- (1) k[x, y] = k[u, v], and
- (2) h(u, v) := f(x(u, v), y(u, v)) and $e = \deg h(u, v)$ are given as follows if $g \le 4$; Case g = 0: e = 1 and h = u.
 - Case g = 1: e = 3 and $h = v^2 (u^3 + au + b)$ with $a, b \in k$.

Case g = 2: e = 5 and $h = v^2 - (u^5 + au^3 + bu^2 + cu + d)$ with a, b, c, $d \in k$.

- Case g = 3: There are three types:
 - (1) e = 4 and $h = v^3 + g_1(u)v (u^4 + g_2(u))$ with $g_i(u) \in k[u]$ and $\deg g_i(u) \le 2$ for i = 1, 2.

Communicated by Prof. K. Ueno, March 3, 1995