High order Itô-Taylor approximations to heat kernels*

By

Arturo Kohatsu-Higa

1. Introduction

Let (Ω, \mathcal{F}, P) be the canonical space of the standard *m* dimensional Wiener process $W = (W^1, \dots, W^m)$. On this space, define X as the solution of the following SDE (stochastic differential equation):

$$X_{t} = x + \sum_{i=1}^{m} \int_{0}^{t} B_{i}(X_{s}) dW_{s}^{i} + \int_{0}^{t} B_{0}(X_{s}) ds, \quad 0 \le t \le T, \quad (1.1)$$

where, $x \in \mathbf{R}^d$ and B_i : $\mathbf{R}^d \rightarrow \mathbf{R}^d$, $i = 0, \dots, m$ are smooth vector fields with bounded derivatives. It is known that under the condition that

$$(\det \sigma_{X_t})^{-1} \in \bigcap_{p \ge 1} L^p(\Omega), \qquad (1.2)$$

 X_t has a smooth density, say q(t; x, y). Here σ_F denotes the Malliavin covariance matrix of the random variable F.

The purpose of this article is to find ways of approximating q(t; x, y). Recently, Hu-Watanabe [4] and Bally-Talay [1], have obtained results on this problem. Let's introduce these results. Define the following sets of vector fields

$$\sum_{0} = \{B_{j}, j = 1, \dots, m\}$$

$$\sum_{j} = \{[B_{k}, V]; V \in \sum_{j=1}, k = 0, \dots, m\}, j \ge 1,$$

where $[\cdot, \cdot]$ denotes the Lie bracket. Now define for $A \ge 1$, the quadratic forms

$$V_A(x, \eta) := \sum_{V \in \Sigma_{A^{-1}}} \langle V(x), \eta \rangle^2$$

and set

$$V_{A}(x) = 1 \wedge \inf_{|\eta|=1} V_{A}(x, \eta).$$
 (1.3)

Communicated by Prof. S. Watanabe, May 20, 1996

^{*} This article was written while the author was visiting the Department of Mathematics at Kyoto University with a JSPS fellowship