Meyer's inequality of the type $L(\log L)^{\alpha}$ on abstract Wiener spaces

By

Yuzuru Inahama

1. Introduction

Let (W, H, μ) be an abstract Wiener space, that is,

(i) W is a real separable Banach space,

(ii) H is a real separable Hilbert space which is continuously and densely imbedded in W,

(iii) μ is a Borel probability measure on W such that

$$\int_{W} \exp\left(\sqrt{-1}(f,w)\right) d\mu(w) = \exp\left(-\frac{1}{2} \|f\|_{H^{*}}^{2}\right)$$

for any $f \in W^*$. Here we identify H^* with H by the Riesz theorem so that $W^* \hookrightarrow H^* = H$. As usual, we denote by D H-derivative and by L be the Ornstein-Uhlenbeck operator, cf. [13].

As for the continuity of operators D and L with respect to L^p -norms on the Wiener space, the following inequality due to Meyer [8] is well-known: for 1 ,

$$\|D\phi\|_{p} \lesssim \|(I-L)^{1/2}\phi\|_{p} \lesssim \|D\phi\|_{p} + \|\phi\|_{p}.$$
(1.1)

Here $A(\phi) \leq B(\phi)$ means that there exists a constant k > 0 independent of ϕ such that $A(\phi) \leq kB(\phi)$ holds for every ϕ . (1.1) implies in particular that the operator $D(I-L)^{-1/2}$ is continuous from $L^p(\mu)$ to $L^p(\mu:H)$ (L^p -space with values in $H^* = H$) if 1 . However this continuity fails when <math>p = 1 and the main purpose of this article is to study the continuity of the operator $D(I-L)^{-1/2}$ with respect to the $L(\log L)^{\alpha}$ -topology.

Meyer's proof of (1.1) relies on the Littlewood-Paley inequality. Recently, a simplified proof was given by Pisier [9], or Feyel [3], by using the L^p -continuity of the Hilbert transform on the circle. L^1 -continuity of the Hilbert transform no longer holds. However, it is continuous as an operator from $L \log L$ to L^1 (cf. [6]). Taking this fact into account, a natural question arises: Can we show that

Received February 25, 1998