On steady Stokes and Navier-Stokes problems with zero velocity at infinity in a three-dimensional exterior domain

By

S.A. NAZAROV and K. PILECKAS¹

1. Introduction

In the paper we study the exterior Stokes and Navier-Stokes problems with zero conditions at infinity in weighted function spaces. Let us formulate these problems. Let Ω be an exterior domain in \mathbf{R}^3 (i.e. $\Omega = \mathbf{R}^3 \setminus \overline{G}$, where G is a bounded domain). Without any loss of generality we can assume that the Cartesian coordinate system in \mathbf{R}^3 is chosen so, that the origin lies outside $\overline{\Omega}$ i.e. the point x=0 belongs to G. We also assume the boundary $\partial \Omega$ to be a smooth compact manifold. In Ω we consider the Stokes

$$-\nu\Delta \mathbf{v} + \nabla p = \mathbf{f}, \quad x \in \Omega,$$

$$\nabla \cdot \mathbf{v} = q, \quad x \in \Omega,$$
(1.1)

and Navier-Stokes

$$-\nu\Delta \mathbf{v} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla p = \mathbf{f}, \quad x \in \Omega,$$

$$\nabla \cdot \mathbf{v} = 0, \quad x \in \Omega, \qquad (1.2)$$

systems of equations with the boundary conditions

$$\mathbf{v} = \mathbf{h}, \quad x \in \partial \Omega. \tag{1.3}$$

Moreover, we assume the velocity field \mathbf{v} to vanish at infinity

$$\lim_{|x|\to\infty} \mathbf{v}(x) = 0. \tag{1.4}$$

In (1.1)-(1.4) $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, $\nabla = (\partial/\partial x_1, \partial/\partial x_2, \partial/\partial x_3)$, $\mathbf{v} = (v_1, v_2, v_3)$ and p are the velocity field and the pressure function in the flow, ν is the coefficient of viscosity, **f** and **h** are given vector functions in \mathbb{R}^3 and g is a given scalar function. By "•" we denote the scalar product in \mathbb{R}^3 .

¹This paper was finished during the stay of K. Pileckas as a visiting professor at the Kyoto University which is kindly acknowledged for the financial support.

Communicated by Prof. T. Nishida, March 17, 1998