KO-theory of flag manifolds

By

Daisuke KISHIMOTO, Akira KONO and Akihiro OHSITA

1. Introduction

The purpose of this paper is to determine the KO^* -groups of flag manifolds which are the homogeneous spaces G(n)/T for G = U, Sp, SO and T is the maximal torus of G(n). We compute it by making use of the Atiyah-Hirzebruch spectral sequence and obtain the following.

Theorem. The KO^i -groups of G(n)/T for G = U, Sp, SO are as in Table 1, where $s = n!/2, 2^{n-1}n!$ for G = U, Sp and $s = 2^{m-2}m!, 2^{m-1}m!$ for G = SO and n = 2m, 2m+1 respectively.

2. The Atiyah-Hirzebruch spectral sequence

First we recall that the coefficient ring of KO-theory is that

$$KO^* = \mathbf{Z}[\alpha, x, \beta, \beta^{-1}]/(2\alpha, \alpha^3, \alpha x, x^2 - 4\beta),$$

where $|\alpha| = -1$, |x| = -4 and $|\beta| = -8$.

Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ is the spectral sequence with $E_2^{p,q} \cong H^p(X; KO^q)$ converging to $KO^*(X)$. It is well known that the differential d_2 of the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ is given by the following (see [2]).

$$d_2^{*,q} = \begin{cases} Sq^2 \,\pi_2, & q \equiv 0 \ (8), \\ Sq^2, & q \equiv -1 \ (8), \\ 0, & \text{otherwise}, \end{cases}$$

where π_2 is the modulo 2 reduction.

It is well known that G/T is a CW-complex with only even cells, where G is a compact connected Lie group and T is the maximal torus of G ([1]). The next proposition, given in [4] and [5], is concerned with the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ for the special X which can be G/T.

Proposition 2.1. Let X be a CW-complex whose cohomology is torsion free and concentrated in even dimension, and $E_r(X)$ be the r-th term of the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$. Then we have the following.

Received November 28, 2003