The Steenrod algebra and the automorphism group of additive formal group law

By

Masateru INOUE*

1. Introduction

Let H_*H be the Hopf algebra of stable co-operations of the mod 2 ordinary cohomology theory $H^*()$. The structure of H_*H is well known as follows. First J. P. Serre [7] determined the unstable cohomology of the Eilenberg-MacLane complex $K(n, \mathbb{Z}/2)$. He has shown the stable part of $H^*(K(n, \mathbb{Z}/2))$ is generated by iterated Steenrod operations and computed the rank of $H^i(K(n, \mathbb{Z}/2))$ in terms of excess operations. He assumed the existence of Steenrod squares Sq^i but did not use the Adem relations. Using the Adem relations, we see that the algebra S^* generated by Steenrod squares modulo the Adem relations is isomorphic to H^*H . Moreover Milnor [4] determined the Hopf algebra structure of S_* , the dual Steenrod algebra which is the polynomial algebra $\mathbb{F}_2[\xi_1, \xi_2, ...]$ with the coproduct $\psi(\xi_n) = \sum_{i=0}^n \xi_{n-i}^{2^i} \otimes \xi_i$, and therefore we obtain the Hopf algebra structure of H_*H .

Now we recall strict automorphisms of the additive formal group law. Let G_a be the additive formal group law, and $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ the set of strict automorphisms of G_a over a non-negatively graded commutative \mathbb{F}_2 -algebra R_* . An element f(x) in $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ is written as a formal power series $x + \sum_{i=1}^{\infty} a_i x^{2^i}$, where $a_i \in R_{2^i-1}$. Here $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(-)$ is a functor from the category of graded algebras to the category of sets. A product of $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*)$ is defined by the composition of power series, and induces the group structure. Therefore $\operatorname{Aut}_{\mathbb{F}_2}(G_a)(-)$ is a functor to the category of groups, and is represented by the Hopf algebra $A_* = \mathbb{F}_2[\bar{\xi}_1, \bar{\xi}_2, \ldots]$ with the coproduct $\psi(\bar{\xi}_n) = \sum_{i=0}^n \bar{\xi}_{n-i}^{2^i} \otimes \bar{\xi}_i$. In other words, we have a natural group isomorphism

$$\operatorname{Hom}_{\mathbb{F}_2\operatorname{-alg}}(A_*, R_*) \cong \operatorname{Aut}_{\mathbb{F}_2}(G_a)(R_*).$$

Comparing S_* with A_* , we see that $S_* \cong A_*$ as a Hopf algebra.

We recall the Dickson algebra. Let V^n be the \mathbb{F}_2 -vector space spanned by elements x_1, \ldots, x_n . In the polynomial ring $\mathbb{F}_2[x_1, \ldots, x_n][t]$, consider the

²⁰⁰⁰ Mathematics Subject Classification(s). Primary 55N22, 55S10; Secondary 55P20 Received December 24, 2003

Revised August 11, 2004

^{*}The author was partially supported by JSPS Research Fellowships for Young Scientists