The Steenrod algebra and the automorphism group of additive formal group law

By
Masateru Inoue*

1. Introduction

Let $H_{*} H$ be the Hopf algebra of stable co-operations of the mod 2 ordinary cohomology theory $H^{*}()$. The structure of $H_{*} H$ is well known as follows. First J. P. Serre [7] determined the unstable cohomology of the Eilenberg-MacLane complex $K(n, \mathbb{Z} / 2)$. He has shown the stable part of $H^{*}(K(n, \mathbb{Z} / 2))$ is generated by iterated Steenrod operations and computed the rank of $H^{i}(K(n, \mathbb{Z} / 2))$ in terms of excess operations. He assumed the existence of Steenrod squares $S q^{i}$ but did not use the Adem relations. Using the Adem relations, we see that the algebra S^{*} generated by Steenrod squares modulo the Adem relations is isomorphic to $H^{*} H$. Moreover Milnor [4] determined the Hopf algebra structure of S_{*}, the dual Steenrod algebra which is the polynomial algebra $\mathbb{F}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right]$ with the coproduct $\psi\left(\xi_{n}\right)=\sum_{i=0}^{n} \xi_{n-i}^{2^{i}} \otimes \xi_{i}$, and therefore we obtain the Hopf algebra structure of $H_{*} H$.

Now we recall strict automorphisms of the additive formal group law. Let G_{a} be the additive formal group law, and $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ the set of strict automorphisms of G_{a} over a non-negatively graded commutative \mathbb{F}_{2}-algebra R_{*}. An element $f(x)$ in $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)$ is written as a formal power series $x+\sum_{i=1}^{\infty} a_{i} x^{2^{i}}$, where $a_{i} \in R_{2^{i}-1}$. Here $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)(-)$ is a functor from the category of graded algebras to the category of sets. A product of Aut $\mathbb{F}_{2}\left(G_{a}\right)\left(R_{*}\right)$ is defined by the composition of power series, and induces the group structure. Therefore $\operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)(-)$ is a functor to the category of groups, and is represented by the Hopf algebra $A_{*}=\mathbb{F}_{2}\left[\bar{\xi}_{1}, \bar{\xi}_{2}, \ldots\right]$ with the coproduct $\psi\left(\bar{\xi}_{n}\right)=\sum_{i=0}^{n} \bar{\xi}_{n-i}^{2^{i}} \otimes \bar{\xi}_{i}$. In other words, we have a natural group isomorphism

$$
\operatorname{Hom}_{\mathbb{F}_{2}-\operatorname{alg}}\left(A_{*}, R_{*}\right) \cong \operatorname{Aut}_{\mathbb{F}_{2}}\left(G_{a}\right)\left(R_{*}\right)
$$

Comparing S_{*} with A_{*}, we see that $S_{*} \cong A_{*}$ as a Hopf algebra.
We recall the Dickson algebra. Let V^{n} be the \mathbb{F}_{2}-vector space spanned by elements x_{1}, \ldots, x_{n}. In the polynomial ring $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right][t]$, consider the

[^0]
[^0]: 2000 Mathematics Subject Classification(s). Primary 55N22, 55S10; Secondary 55P20
 Received December 24, 2003
 Revised August 11, 2004
 *The author was partially supported by JSPS Research Fellowships for Young Scientists

