KILLING FIELDS, MEAN CURVATURE, TRANSLATION MAPS

SUSANA FORNARI AND JAIME RIPOLL

Abstract

D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of a complete constant mean curvature (cmc) oriented surface M immersed in \mathbb{R}^{3} is contained in a closed hemisphere of \mathbb{S}^{2} (equivalently, the function $\langle\eta, v\rangle$ does not change sign on M, where η is a unit normal vector of M and v some non-zero vector of \mathbb{R}^{3}), then M is invariant by a one parameter subgroup of translations of \mathbb{R}^{3} (the one determined by v). We obtain an extension of this result to the case that the ambient space is a Riemannian manifold N and M is a hypersurface on N by requiring that the function $\langle\eta, V\rangle$ does not change sign on M, where V is a Killing field on N. We also obtain a stability criterium for cmc surfaces in N^{3}. In the last part of the article we consider a Killing parallelizable Riemannian manifold N and define a translation map $\gamma: M \rightarrow \mathbb{R}^{n}$ of a hypersurface M of N which is a natural extension of the Gauss map of a hypersurface in \mathbb{R}^{n}. Considering the same hypothesis on the image of γ we obtain an extension to this setting of the original Hoffmann-Osserman-Schoen result. Motivated by this extension, we restate in this context a conjecture made by M. P. do Carmo which, in \mathbb{R}^{3}, states that the Gauss image of a complete cmc surface which is not a plane nor a cylinder contains a neighborhood of some equator of the sphere.

1. Introduction

D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of a complete constant mean curvature (cmc) oriented surface M immersed in \mathbb{R}^{3} is contained in a closed hemisphere of \mathbb{S}^{2}, then M is invariant by a one parameter subgroup of translations of \mathbb{R}^{3}; it then follows that M is a circular cylinder or a plane (Theorem 1 of $[\mathrm{HOS}]$). This result may be equivalently stated as follows: Let η be a unit normal vector field to M in \mathbb{R}^{3}. If, for some nonzero vector $V \in \mathbb{R}^{3}$, the map

$$
\begin{equation*}
f(p):=\langle\eta(p), V\rangle, p \in M \tag{1.1}
\end{equation*}
$$

[^0]
[^0]: Received May 7, 2004; received in final form July 19, 2004.
 2000 Mathematics Subject Classification. Primary 53. Secondary 58.

