Illinois Journal of Mathematics Volume 48, Number 4, Winter 2004, Pages 1385–1403 S 0019-2082

KILLING FIELDS, MEAN CURVATURE, TRANSLATION MAPS

SUSANA FORNARI AND JAIME RIPOLL

ABSTRACT. D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of a complete constant mean curvature (cmc) oriented surface M immersed in \mathbb{R}^3 is contained in a closed hemisphere of \mathbb{S}^2 (equivalently, the function $\langle \eta, v \rangle$ does not change sign on M, where η is a unit normal vector of M and v some non-zero vector of \mathbb{R}^3), then M is invariant by a one parameter subgroup of translations of \mathbb{R}^3 (the one determined by v). We obtain an extension of this result to the case that the ambient space is a Riemannian manifold N and Mis a hypersurface on N by requiring that the function $\langle \eta, V \rangle$ does not change sign on M, where V is a Killing field on N. We also obtain a stability criterium for cmc surfaces in N^3 . In the last part of the article we consider a Killing parallelizable Riemannian manifold N and define a translation map $\gamma: M \to \mathbb{R}^n$ of a hypersurface M of N which is a natural extension of the Gauss map of a hypersurface in \mathbb{R}^n . Considering the same hypothesis on the image of γ we obtain an extension to this setting of the original Hoffmann-Osserman-Schoen result. Motivated by this extension, we restate in this context a conjecture made by M. P. do Carmo which, in \mathbb{R}^3 , states that the Gauss image of a complete cmc surface which is not a plane nor a cylinder contains a neighborhood of some equator of the sphere.

1. Introduction

D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of a complete constant mean curvature (cmc) oriented surface M immersed in \mathbb{R}^3 is contained in a closed hemisphere of \mathbb{S}^2 , then M is invariant by a one parameter subgroup of translations of \mathbb{R}^3 ; it then follows that M is a circular cylinder or a plane (Theorem 1 of [HOS]). This result may be equivalently stated as follows: Let η be a unit normal vector field to M in \mathbb{R}^3 . If, for some nonzero vector $V \in \mathbb{R}^3$, the map

(1.1)
$$f(p) := \langle \eta(p), V \rangle, \ p \in M,$$

©2004 University of Illinois

Received May 7, 2004; received in final form July 19, 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53. Secondary 58.