EISENSTEIN SERIES AND CARTAN GROUPS

BY

Isaac Efrat ${ }^{1}$

Introduction

The principal congruence subgroup $\Gamma(N)$ acts discontinuously on the upper half plane \mathscr{H}, to give a non-compact fundamental domain of finite volume. Given such a group, one can associate to each cusp κ_{i} an Eisenstein series $E_{i}(z, s)$, where $z \in \mathscr{H}$ and $s \in \mathbf{C}$. This Eisenstein series admits a Fourier expansion at each cusp κ_{j}. The zero Fourier coefficient involves a meromorphic function $\phi_{i j}(s)$, so that one obtains a matrix $\Phi(s)=\left(\phi_{i j}(s)\right)_{i, j}$ (see §1 for precise definitions).

The determinant $\phi(s)=\operatorname{det} \Phi(s)$ plays a key role in the theory, mostly due to its appearance in the Selberg trace formula for the group in question. Of particular importance are the poles of $\phi(s)$, whose analysis is connected with the study of cusp forms for the group (see [11], [1]).

The problem of computing $\phi(s)$ for $\Gamma(N)$ was first addressed by Hejhal (see [4]), who treated the case of square free and odd N by some rather involved methods. Huxley [5] has recently solved the problem using other ingenious arguments, and gave an expression for $\phi(s)$ for any N. As for other groups, we mention the work in [2] where we compute these determinants for Hilbert modular groups, and in [1], where they are partially analyzed for congruence subgroups of Hilbert modular groups. Other relevant references are [3], [8], [9].

Our aim in this paper is to introduce the Cartan group $C(N)$ into the study of the Eisenstein series for $\Gamma(N)$, and to use it in order to give a short and simple proof of the precise formula for $\phi(s)$, for any N. Our main theorem (§3) shows that $\phi(s)$ is naturally expressed in terms of the L-functions on $C(N)$. These L-functions also come up in the work of Kubert and Lang on modular units [7].

1. The Eisenstein series

Let

$$
\Gamma=\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbf{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv I(\bmod N)\right.\right\}
$$

[^0]
[^0]: Received October 11, 1985
 ${ }^{1}$ Partially supported by a grant from the National Science Foundation.

