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1. Let G be a locally compact abelian group and S a closed subset of the
character group G^. If S is sufficiently "small", it is natural to expect that
any finite complex measure on G with Fourier-Stieltjes transform I vanish-
ing off S will be absolutely continuous. As the simplest case, one knows that

(1.1) if S has finite Haar measure, every with I 0 off S is absolutely
continuous,

since is then integrable [4]. Deeper examples are provided by the F. and
M. Riesz theorem (where G is the integer group Z and S the non-negative
integers) and Bochner’s generalization of that result (where G Z" and S is
the positive orthant) [4]. In both these results S has the property that for
all in G

(1.2) S n ( S) has finite measure;

the purpose of the present note is to point out that (1.2) alone insures some-
thing suggesting absolute continuity, specifically that is then absolutely
continuous for every measure with vanishing off S.

(In case G is metric, even Il *1] is absolutely continuous. Since
there are examples [5] of (non-negative) singular measures on the circle
group with absolutely continuous, we are of course still quite far from
concluding that (1.2) implies absolute continuity.)
Our proof is mainly measure-theoretic and depends basically on disintegra-

tion of measures [1], [2]; just about the only fact from harmonic analysis that
is needed is (1.1) itself. Indeed the result comes from the observations that
(1.2) says that certain sections of S X S (by cosets of the antidiagonal of
G X G^) have finite measure, and that on each of these sections ( X )^ is
the transform of a measure on G which is closely related to I1 *1*1 -a
fact which appears from a disintegration of X .

Since all proofs of the F. and M. Riesz theorem and Bochner’s theorem
depend (in one way or another) on the fact that there S is a proper sub-
semigroup of G^, one might hope to obtain the full analogue of these results
using such an hypothesis; as will be seen, our proof seems unsuited to pro-
ducing such a result. However, the approach can be combined with the F.
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In our references to these results below we always have in mind only that half which

yields the absolute continuity of .
u denotes the usual absolute value (total variation) measure associated with .
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