HOMOMORPHISMS OF IDEALS IN GROUP ALGEBRAS¹

BY

FRANK FORELLI

1. Let G_1 and G_2 be locally compact abelian groups, let J be a closed ideal in the group algebra $L^{1}(G_{1})$, and let T be a homomorphism of the ideal J into the algebra $M(G_2)$ of bounded and regular Borel measures on G_2 . The purpose of this paper is to show that when $||T|| \leq 1$, then T must come from an affine transformation of the dual group Γ_2 of G_2 into the dual group Γ_1 of G_1 . When $J = L^{1}(G_{1})$, this is known and is due to Helson [3]. Helson assumes also that T is an isomorphism onto $L^1(G_2)$, but with a certain modification his argument works without this additional assumption. That Tcomes from an affine transformation when $J = L^{1}(G_{1})$ and $||T|| \leq 1$ is also a corollary of the deep result of Cohen [1], [4, ch. 4] that every homomorphism of $L^{1}(G_{1})$ into $M(G_{2})$ comes from a piecewise affine transformation of Γ_{2} into Γ_1 . Although our extension of Helson's theorem is very modest and the proof we offer is not difficult, it does not seem to be possible to obtain this extension from either the results or the arguments of Helson and Cohen.

Let Δ_1 be the open set of χ in Γ_1 such that $\hat{f}(\chi) \neq 0$ for some f in J, where \hat{f} is the Fourier transform of f. Then Δ_1 can be identified with the maximal ideal space of J. Each χ in Δ_1 defines a nontrivial complex homomorphism of J whose value at f in J is $\hat{f}(\chi)$, and every such homomorphism of J is obtained in this way. Moreover, \hat{J} separates points on Δ_1 as J contains every f in $L^1(G_1)$ such that the support of \hat{f} is contained in Δ_1 [4, p. 161], and the topology of Δ_1 as a subspace of Γ_1 is the same as the topology induced on Δ_1 by the functions in \hat{J} . Let Δ_2 be the open set of χ in Γ_2 such that $(Tf)^{\wedge}(\chi) \neq 0$ for some f in J is $(Tf)^{\wedge}(\chi)$, and therefore there is $\varphi(\chi)$ in Δ_1 such that $(Tf)^{\wedge}(\chi) = \hat{f}(\varphi(\chi))$. The map φ from Δ_2 into Δ_1 defined in this way is continuous and we have for f in J,

$$(Tf)^{*} = 0$$
 on $\Gamma_2 \setminus \Delta_2$

$$(Tf)^{\wedge} = \hat{f}(\varphi)$$
 on Δ_2 .

Let Σ_2 be the coset in Γ_2 generated by Δ_2 . A map π from Σ_2 into Γ_1 is said to be affine if

$$\pi(\alpha\beta\gamma^{-1}) = \pi(\alpha)\pi(\beta)\pi(\gamma)^{-1}$$

for all α , β , γ in Σ_2 . Because the norm of a multiplicative linear functional on J is 1, we always have $||T|| \ge 1$ (unless T = 0, and we will always assume $T \neq 0$). We will show:

Received January 18, 1964.

¹ This work was supported by the National Science Foundation.